全文获取类型
收费全文 | 3601篇 |
免费 | 152篇 |
国内免费 | 3篇 |
专业分类
3756篇 |
出版年
2024年 | 9篇 |
2023年 | 18篇 |
2022年 | 45篇 |
2021年 | 78篇 |
2020年 | 70篇 |
2019年 | 81篇 |
2018年 | 117篇 |
2017年 | 89篇 |
2016年 | 164篇 |
2015年 | 249篇 |
2014年 | 292篇 |
2013年 | 261篇 |
2012年 | 310篇 |
2011年 | 302篇 |
2010年 | 211篇 |
2009年 | 177篇 |
2008年 | 255篇 |
2007年 | 209篇 |
2006年 | 152篇 |
2005年 | 159篇 |
2004年 | 153篇 |
2003年 | 138篇 |
2002年 | 118篇 |
2001年 | 17篇 |
2000年 | 11篇 |
1999年 | 16篇 |
1998年 | 17篇 |
1997年 | 10篇 |
1996年 | 8篇 |
1995年 | 1篇 |
1994年 | 4篇 |
1992年 | 1篇 |
1991年 | 2篇 |
1990年 | 1篇 |
1989年 | 3篇 |
1988年 | 2篇 |
1984年 | 3篇 |
1981年 | 1篇 |
1977年 | 1篇 |
1974年 | 1篇 |
排序方式: 共有3756条查询结果,搜索用时 15 毫秒
101.
Yoon Seok Choi Jung Eun Lee Seung Joo Nam Jung Tak Park Hyon-Suk Kim Kyu Hun Choi Beom Seok Kim Eui-Cheol Shin 《PloS one》2013,8(4)
In hepatitis C Virus (HCV) high-risk groups, HCV-specific T cell responses have been detected in seronegative, aviremic persons who have no evidence of HCV infection. Herein, we investigated functional profiles of HCV-specific T-cell responses in seronegative, aviremic patients of a HCV high-risk group. Seventy seven hemodialysis patients with chronic renal disease were analyzed by IFN-γ ELISpot assays, and eight of 71 (11.3%) seronegative, aviremic patients displayed HCV-specific T-cell responses. Their HCV-specific memory T cells were characterized by assessing cytokine polyfunctionality, known to provide antiviral protection. By intracellular staining of IFN-γ, TNF-α, IL-2 and MIP-1β, we identified two distinct populations in the seronegative, aviremic patients: polyfunctional responders and TNF-α-predominant responders. In further analysis, occult HCV infection was excluded as a cause of the HCV-specific T cell response via secondary nested RT-PCR of HCV RNA in peripheral blood mononuclear cell samples. HCV-specific T cells targeted multiple epitopes including non-structural proteins in a single patient, implying that their T cells might have been primed by HCV proteins synthesized within the host. We conclude that HCV-specific memory T cells of seronegative, aviremic patients arise from authentic HCV replication in the host, but not from current occult HCV infection. By functional pattern of HCV-specific T cells, there are two distinct populations in these patients: polyfunctional responders and TNF-α-predominant responders. 相似文献
102.
Eun Sik Tak 《Bioscience, biotechnology, and biochemistry》2013,77(3):367-373
The coelomic cells of the earthworm consist of leukocytes, chlorogocytes, and coelomocytes, which play an important role in innate immunity reactions. To gain insight into the expression profiles of coelomic cells of the earthworm, Eisenia andrei, we analyzed 1151 expressed sequence tags (ESTs) derived from the cDNA library of the coelomic cells. Among the 1151 ESTs analyzed, 493 ESTs (42.8%) showed a significant similarity to known genes and represented 164 unique genes, of which 93 ESTs were singletons and 71 ESTs manifested as two or more ESTs. From the 164 unique genes sequenced, we found 24 immune-related and cell defense genes. Furthermore, real-time PCR analysis showed that levels of lysenin-related proteins mRNA in coelomic cells of E. andrei were upregulated after the injection of Bacillus subtilis bacteria. This EST data-set would provide a valuable resource for future researches of earthworm immune system. 相似文献
103.
Eun Ryoung Jang Minsook Ryu Jeong Eun Park Jung-Ho Kim Jong-Soo Lee Kiwon Song 《The Journal of biological chemistry》2010,285(5):2986-2995
We screened a protoberberine backbone derivative library for compounds with anti-proliferative effects on p53-defective cancer cells. A compound identified from this small molecule library, cadein1 (cancer-selective death inducer 1), an isoquinolinium derivative, effectively leads to a G2/M delay and caspase-dependent apoptosis in various carcinoma cells with non- functional p53. The ability of cadein1 to induce apoptosis in p53-defective colon cancer cells was tightly linked to the presence of a functional DNA mismatch repair (MMR) system, which is an important determinant in chemosensitivity. Cadein1 was very effective in MMR+/p53− cells, whereas it was not effective in p53+ cells regardless of the MMR status. Consistently, when the function of MMR was blocked with short hairpin RNA in SW620 (MMR+/p53−) cells, cadein1 was no longer effective in inducing apoptosis. Besides, the inhibition of p53 increased the pro-apoptotic effect of cadein1 in HEK293 (MMR+/p53+) cells, whereas it did not affect the response to cadein1 in RKO (MMR−/p53+) cells. The apoptotic effects of cadein1 depended on the activation of p38 but not on the activation of Chk2 or other stress-activated kinases in p53-defective cells. Taken together, our results show that cadein1 may have a potential to be an anti-cancer chemotherapeutic agent that is preferentially effective on p53-mutant colon cancer cells with functional MMR. 相似文献
104.
Myung S. Lee Eun S. Tak Sang K. Park Sung J. Cho Yoonsoo Hahn Seong S. Joo Do I. Lee Chi H. Ahn Soon C. Park 《Biologia》2010,65(2):284-288
A couple of new antistasin family serine protease inhibitors have been isolated from the non-hematophagous earthworm, Eisenia andrei. These novel inhibitors have been designated as eisenstasin I and II. Similar to other antistasin family inhibitors, eisenstasin
I and II feature 3 and 4 internal repeats, respectively, of a 24–29 amino acid sequence, both of which exhibit a conserved
pattern of 6-cysteine/2-glycine at an identical position between the third and fourth cysteine residues. This suggests that
the eisenstasins isolated from the earthworm are members of the antistasin family. The eisenstasins are 82% similar with regard
to amino acid sequences and exhibit over 70% similarity with the antistasins from the earthworm Lumbricus rubellus, while also displaying less than 40% sequence similarity with the leech antistasins. Earthworm eisenstasins are basic proteins,
primarily due to the frequent occurrence of arginine residues in their structure, especially at the C-terminal region. As
arginine is a key residue for the substrate specificity of some serine proteases including FXa, it is thought that these multiple
arginine residues may play a role in the inhibitory characteristics of the eisenstasins. Considering the structure and number
of the internal repeats derived from a variety of animal species, the deletion as well as the duplication of all or part of
an internal repeat may be implicated in the evolution of the structure and function of the antistasin family inhibitors. 相似文献
105.
Sung-Gil Hong Jae Hyun Kim Ryang Eun Kim Seok-Joon Kwon Dae Woo Kim Hee-Tae Jung Jonathan S. Dordick Jungbae Kim 《Biotechnology and Bioprocess Engineering》2016,21(4):573-579
Glucose oxidase (GOx) was immobilized onto graphene oxide (GRO) via three different preparation methods: enzyme adsorption (EA), enzyme adsorption and crosslinking (EAC), and enzyme adsorption, precipitation and crosslinking (EAPC). EAPC formulations, prepared via enzyme precipitation with 60% ammonium sulfate, showed 1,980 and 1,630 times higher activity per weight of GRO than those of EA and EAC formulations, respectively. After 59 days at room temperature, EAPC maintained 88% of initial activity, while EA and EAC retained 42 and 45% of their initial activities, respectively. These results indicate that the steps of precipitation and crosslinking in the EAPC formulation are critical to achieve high enzyme loading and stability of EAPC. EA, EAC and EAPC were used to prepare enzyme electrodes for use as glucose biosensors. Optimized EAPC electrode showed 93- and 25-fold higher sensitivity than EA and EAC, respectively. To further increase the sensitivity of EAPC electrode, multi-walled carbon nanotubes (MWCNTs) were mixed with EAPC for the preparation of enzyme electrode. Surprisingly, the EAPC electrode with additional 99.5 wt% MWCNTs showed 7,800-fold higher sensitivity than the EAPC electrode without MWCNT addition. Immobilization and stabilization of enzymes on GRO via the EAPC approach can be used for the development of highly sensitive biosensors as well as to achieve high enzyme loading and stability. 相似文献
106.
Mi Jin Yoon Eun Hee Kim Jun Hee Lim Taeg Kyu Kwon Kyeong Sook Choi 《Free radical biology & medicine》2010,48(5):713-726
Curcumin is considered a pharmacologically safe agent that may be useful in cancer chemoprevention and therapy. Here, we show for the first time that curcumin effectively induces paraptosis in malignant breast cancer cell lines, including MDA-MB-435S, MDA-MB-231, and Hs578T cells, by promoting vacuolation that results from swelling and fusion of mitochondria and/or the endoplasmic reticulum (ER). Inhibition of protein synthesis by cycloheximide blocked curcumin-induced vacuolation and subsequent cell death, indicating that protein synthesis is required for this process. The levels of AIP-1/Alix protein, a known inhibitor protein of paraptosis, were progressively downregulated in curcumin-treated malignant breast cancer cells, and AIP-1/Alix overexpression attenuated curcumin-induced death in these cells. ERK2 and JNK activation were positively associated with curcumin-induced cell death. Mitochondrial superoxide was shown to act as a critical early signal in curcumin-induced paraptosis, whereas proteasomal dysfunction was mainly responsible for the paraptotic changes associated with ER dilation. Notably, curcumin-induced paraptotic events were not observed in normal breast cells, including mammary epithelial cells and MCF-10A cells. Taken together, our findings on curcumin-induced paraptosis may provide novel insights into the mechanisms underlying the selective anti-cancer effects of curcumin against malignant cancer cells. 相似文献
107.
Eun Jeong Park Yoshikazu Yuki Hiroshi Kiyono Motomu Shimaoka 《Journal of biomedical science》2015,22(1)
Integrins mediate leukocyte accumulation to the sites of inflammation, thereby enhancing their potential as an important therapeutic target for inflammatory disorders. Integrin activation triggered by inflammatory mediators or signaling pathway is a key step to initiate leukocyte migration to inflamed tissues; however, an appropriately regulated integrin deactivation is indispensable for maintaining productive leukocyte migration. While typical integrin antagonists that block integrin activation target the initiation of leukocyte migration, a novel class of experimental compounds has been designed to block integrin deactivation, thereby perturbing the progression of cell migration. Current review discusses the mechanisms by which integrin is activated and subsequently deactivated by focusing on its structure-function relationship. 相似文献
108.
109.
Sphingosylphosphorylcholine (SPC) is a bioactive lipid molecule involved in numerous biological processes. Treatment of MS1 pancreatic islet endothelial cells with SPC increased phospholipase D (PLD) activity in a time- and dose-dependent manner. In addition, treatment of the MS1 cells with 10 microM SPC induced stimulation of phospholipase C (PLC) activity and transient elevation of intracellular Ca2+. The SPC-induced PLD activation was prevented by pretreatment of the MS1 cells with a PLC inhibitor, U73122, and an intracellular Ca2+-chelating agent, BAPTA-AM. This suggests that PLC-dependent elevation of intracellular Ca2+ is involved in the SPC-induced activation of PLD. The SPC-dependent PLD activity was also almost completely prevented by pretreatment with pan-specific PKC inhibitors, GF109203X and RO-31-8220, and with a PKCdelta-specific inhibitor, rottlerin, but not by pretreatment with GO6976, a conventional PKC isozymes-specific inhibitor. Adenoviral overexpression of a kinase-deficient mutant of PKCdelta attenuated the SPC-induced PLD activity. These results suggest that PKCdelta plays a crucial role for the SPC-induced PLD activation. The SPC-induced PLD activation was preferentially potentiated in COS-7 cells transfected with PLD2 but not with PLD1, suggesting a specific implication of PLD2 in the SPC-induced PLD activation. SPC treatment induced phosphorylation of PLD2 in COS-7 cells, and overexpression of the kinase-deficient mutant of PKCdelta prevented the SPC-induced phosphorylation of PLD2. Furthermore, SPC treatment generated reactive oxygen species (ROS) in MS1 cells and the SPC induced production of ROS was inhibited by pretreatment with U73122, BAPTA-AM, and rottlerin. In addition, pretreatment with a PLD inhibitor 1-butanol and overexpression of a lipase-inactive mutant of PLD2 but not PLD1 attenuated the SPC-induced generation of ROS. These results suggest that PLC-, Ca2+-, PKCdelta-, and PLD2-dependent pathways are essentially required for the SPC induced ROS generation. 相似文献
110.
Saponins are glycosidic compounds present in many edible and inedible plants. They exhibit potent biological activities in mammalian systems, including several beneficial effects such as anti-inflammation and immunomodulation. In this study, we investigated the effects of seven platycodin saponins on the activities of inducible nitric oxide synthase (iNOS) and cyclooxygenase II (COX-2) in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. We found that 2"-O-acetyl polygalacin D (S1), platycodin A (S2), platycodin D (S3), and polygalacin D (S6) inhibited LPS-induced NO production in a concentration-dependent manner. Furthermore, these compounds inhibited the expression of LPS-induced iNOS and COX-2 protein and mRNA without an appreciable cytotoxic effect on RAW 264.7 macrophages, and could suppress induction by LPS of pro-inflammatory cytokines such as prostaglandin E2 (PGE2). Treatment with these compounds of RAW 264.7 cells transfected with a reporter construct indicated a reduced level of LPS-induced nuclear factor-kappaB (NF-kappaB) activity and effectively lowered NF-kappaB binding as measured by electrophoretic mobility shift assay (EMSA). The suppression of NF-kappaB activation appears to occur through the prevention of inhibitor kappaB (IkappaB) degradation. In vivo, platycodin saponin mixture (PS) and S3 protected mice from the lethal effects of LPS. The 89% lethality induced by LPS/galactosamine was reduced to 60% and 50% when PS and S3, respectively, were administered simultaneously with LPS. These results suggest that the main inhibitory mechanism of the platycodin saponins may be the reduction of iNOS and COX-2 gene expression through blocking of NF-kappaB activation. 相似文献