首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   120篇
  免费   16篇
  国内免费   1篇
  137篇
  2023年   1篇
  2022年   1篇
  2019年   2篇
  2018年   3篇
  2017年   6篇
  2016年   7篇
  2015年   7篇
  2014年   3篇
  2013年   8篇
  2012年   9篇
  2011年   11篇
  2010年   13篇
  2009年   6篇
  2008年   8篇
  2007年   5篇
  2006年   3篇
  2005年   5篇
  2004年   6篇
  2003年   4篇
  2002年   6篇
  2001年   1篇
  1999年   3篇
  1998年   4篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1989年   1篇
  1988年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
排序方式: 共有137条查询结果,搜索用时 0 毫秒
91.
92.
Growth and development events are observed in all organisms and can be modified by exogenous factors such as nutritional changes. Drastic morphological and functional alterations may occur during a vulnerable stage of development. The aim of this study was to investigate if malnutrition and/or fluoxetine neonatal treatment program alterations in heart morphology during the postnatal period. The sample consisted of 48 albino Wistar male rats. The rats were divided into two groups: nourished and malnourished. Pharmacologic manipulation was performed during the suckling period. The animals of each group were divided into two subgroups: saline-nourished and saline-malnourished, treated with sodium chloride solution, and fluoxetine-nourished and fluoxetine-malnourished, treated with fluoxetine. Half of the individuals in each subgroup were weighed and sacrificed on day 30 and the other half on day 71. Myocardial perfusion was performed and the heart subsequently weighed. The ventricles were cross-sectioned into two parts, which were fixed, dehydrated and sectioned. There were differences in body weight, heart weight, cross-sectional area and perimeter of the heart and in the cross-sectional area and perimeter of the cardiac cells among the groups at the different ages. Malnutrition appears to program alterations in heart morphology. However, malnourished animals that had undergone drug treatment did not exhibit the same changes.  相似文献   
93.
The effect of anionic and cationic surfactants on acid phosphatase denaturation has been extensively studied. Low molecular mass (LMr) protein tyrosine phosphatase (PTP), a key regulatory enzyme involved in many different processes in the cell, was distinctly affected by anionic (homologous series of n-alkyl sulfates (C8-C14)) and cationic (n-alkyl trimethylammonium bromides (C12-C16)) surfactants. At concentrations 10-fold lower critical micellar concentration (cmc) values, the enzyme was completely inactivated in the presence of anionic surfactants, in a process independent of the pH, and dependent on the chain length of the surfactants. Under the same conditions, the effect of cationic surfactants on the enzyme activity was pH-dependent and only at pH 7.0 full inactivation was observed at concentrations 10-fold higher cmc values. In contrast to cationic surfactants the effect of anionic surfactants on the enzyme activity was irreversible and was not affected by the presence of NaCl. Inorganic phosphate, a known competitive inhibitor of PTP, protected the enzyme against inactivation by the surfactants. Our results suggest that the inactivation of the LMr PTP by anionic and cationic surfactants involved both electrostatic and hydrophobic interactions, and that the interactions enzyme-surfactants probably occurred at or near the active site.  相似文献   
94.

Background  

Cyclic nucleotides are ubiquitous intracellular messengers. Until recently, the roles of cyclic nucleotides in plant cells have proven difficult to uncover. With an understanding of the protein domains which can bind cyclic nucleotides (CNB and GAF domains) we scanned the completed genomes of the higher plants Arabidopsis thaliana (mustard weed) and Oryza sativa (rice) for the effectors of these signalling molecules.  相似文献   
95.
Uric acid inhibited 50% of the activity of bovine kidney low molecular mass phosphotyrosine protein phosphatase at concentrations of 1.0, 0.4, 1.3, and 0.2 mM, respectively for p-nitrophenyl phosphate (p-NPP), flavine mononucleotide, beta-naphthyl phosphate and tyrosine phosphate (Tyr-P) as substrates. The mixed type inhibition of p-NPP hydrolysis was fully reversible, with Kic and Kiu values of 0.4 and 1.1 mM, respectively; the inhibition by uric acid shifted the pH optimum from 5.0 to 6.5. When Tyr-P was the substrate, competitive inhibition was observed with a Ki value of 0.05 mM. Inhibition studies by uric acid in the presence of thiol compounds, and preincubation studies in the presence of inorganic phosphate suggest that the interaction of uric acid with the enzyme occurred at the active site, but did not involve SH residues, and that the mechanism of inhibition depended on the structure of the substrates.  相似文献   
96.
The glycosaminoglycan chondroitin sulfate (CS) is a major constituent of the extracellular matrix of the central nervous system where it can constitute part of the perineuronal nets. Constituents of the perineuronal nets are gaining interest because they have modulatory actions on their neighbouring neurons. In this study we have investigated if CS could afford protection in an acute in vitro ischemia/reoxygenation model by using isolated hippocampal slices subjected to 60min oxygen and glucose deprivation (OGD) followed by 120min reoxygenation (OGD/Reox). In this toxicity model, CS afforded protection of rat hippocampal slices measured as a reduction of lactate dehydrogenase (LDH) release; maximum protection (70% reduction of LDH) was obtained at the concentration of 3mM. To evaluate the intracellular signaling pathways implicated in the protective effect of CS, we first analysed the participation of the mitogen-activated protein kinases (MAPKs) p38 and ERK1/2 by western blot. OGD/Reox induced the phosphorylation of p38 and dephosphorylation of ERK1/2; however, CS only inhibited p38 but had no effect on ERK1/2. Furthermore, OGD/Reox-induced translocation of p65 to the nucleus was prevented in CS treated hippocampal slices. Finally, CS inhibited iNOS induction caused by OGD/Reox and thereby nitric oxide (NO) production measured as a reduction in DAF-2 DA fluorescence. In conclusion, the protective effect of CS in hippocampal slices subjected to OGD/Reox can be related to a modulatory action of the local immune response by a mechanism that implies inhibition of p38, NFκB, iNOS and the production of NO.  相似文献   
97.
Cell cycle transitions spanning meiotic maturation of the Xenopus oocyte and early embryogenesis are tightly regulated at the level of stored inactive maternal mRNA. We investigated here the translational control of cyclin E1, required for metaphase II arrest of the unfertilised egg and the initiation of S phase in the early embryo. We show that the cyclin E1 mRNA is regulated by both cytoplasmic polyadenylation elements (CPEs) and two miR-15/16 target sites within its 3’UTR. Moreover, we provide evidence that maternal miR-15/16 microRNAs co-immunoprecipitate with CPE-binding protein (CPEB), and that CPEB interacts with the RISC component Ago2. Experiments using competitor RNA and mutated cyclin E1 3’UTRs suggest cooperation of the regulatory elements to sustain repression of the cyclin E1 mRNA during early stages of maturation when CPEB becomes limiting and cytoplasmic polyadenylation of repressed mRNAs begins. Importantly, injection of anti-miR-15/16 LNA results in the early polyadenylation of endogenous cyclin E1 mRNA during meiotic maturation, and an acceleration of GVBD, altogether strongly suggesting that the proximal CPEB and miRNP complexes act to mutually stabilise each other. We conclude that miR-15/16 and CPEB co-regulate cyclin E1 mRNA. This is the first demonstration of the co-operation of these two pathways.  相似文献   
98.

Introduction

The clinical management of Gestational diabetes mellitus (GDM) would benefit from enhanced metabolic knowledge both at the time of diagnosis and during therapy.

Objectives

This work aimed at unveiling metabolic markers of GDM and of the subjects’ response to therapy.

Methods

Urine NMR metabolomics was used with a variable selection methodology to reduce uninformative variability. The NMR data was analysed by multivariate and univariate analysis methodologies.

Results

The results showed that urine NMR metabolomics enables a metabolic signature of GDM to be identified at the time of diagnosis. This signature comprises relevant changes in 12 NMR metabolites/resonances and qualitative variations in a number of additional metabolites. The metabolite changes characterizing GDM suggest adaptations in a number of different pathways and highlight the relevance of gut microflora disturbances in relation to the disease. The impact of diet and insulin treatments on the excreted metabolome of pregnant GDM women was measured and enabled responsive and resistant metabolic pathways to be identified, as well as side-effects of treatment i.e. metabolic changes induced by treatment and previously unrelated to the disease (including changes in the gut microflora). Furthermore, treatment duration was found to be associated to urine metabolic profile, thus emphasizing the possible future use of urine metabolomics in treatment follow-up and efficacy evaluation. Finally, a possible association of a priori urinary metabolome with future treatment requirements is reported, albeit requiring demonstration in larger cohorts. This result supports the hypothesis of different metabotypes characterizing different subjects and relating to individual response to treatment.

Conclusion

A 12-resonance metabolic signature of GDN at the time of diagnosis was identified and the evaluation of the impact of insulin and/or diet therapies enabled responsive/resistant metabolic pathways and treatment side-effects to be identified.
  相似文献   
99.
Determining the evolutionary potential of a gene   总被引:4,自引:0,他引:4  
In addition to information for current functions, the sequence of a gene includes potential information for the evolution of new functions. The wild-type ebgA (evolved beta-galactosidase) gene of Escherichia coli encodes a virtually inactive beta-galactosidase, but that gene has the potential to evolve sufficient activity to replace the lacZ gene for growth on the beta-galactoside sugars lactose and lactulose. Experimental evidence, which has suggested that the evolutionary potential of Ebg enzyme is limited o two specific amino acid replacements, is limited to examining the consequences of single base- substitutions. Thirteen beta-galactosidases homologous with the Ebg beta-galactosidase are widely dispersed, being found in gram-negative and gram-positive eubacteria and in a eukaryote. A comparison of Ebg beta-galactosidase with those 13 beta-galactosidases shows that Ebg is part of an ancient clade that diverged from the paralogous lacZ beta- galactosidase over 2 billion years ago. Ebg differs from other members of its clade at only 2 of the 15 active-site residues, and the two mutations required for full Ebg beta-galactosidase activity bring Ebg into conformity with the other members of its clade. We conclude that either these are the only acceptable amino acids at those positions, or all of the single-base-substitution replacements that must arise as intermediates on the way to other acceptable amino acids are so deleterious that they constitute a deep selective valley that has not been traversed in over 2 billion years. The evolutionary potential of Ebg is thus limited to those two replacements.   相似文献   
100.

Background

Metastatic tumor cells have acidic extracellular pH and differential electrochemical H+ gradients generated across their cell membranes by V-type H+-ATPases. This study shows that inhibition of the V-ATPases by the plant-derived monoterpene Myrtenal results in tumor cell death and decreased metastatic dissemination in mice.

Methods

The Myrtenal anticancer toxicity was evaluated in vitro using murine (B16F0 and B16F10) and human (SkMel-5) melanoma cell lines, and in in vivo mouse metastatic dissemination model. Proton flux and extracellular acidification were directly evaluated at the surface of living cells using a non-invasive selective ion electrode approach.

Results

The inhibition of V-ATPases by 100?μM Myrtenal disrupted the electrochemical H+ gradient across the cell membranes, strongly induced cell death (4–5 fold), and decreased tumor cells migration and invasion in vitro. Myrtenal (15?mg/kg) also significantly reduced metastasis induced by B16F10 in vivo, further reinforcing that V-ATPase is a molecular target to halt the progression of cancers.

Conclusions

These data revealed the therapeutic potential of Myrtenal as inhibitor of melanoma progression proposing a mechanism of action by which once inhibited by this monoterpene the proton pumps fail to activate cancer-related differential electrochemical gradients and H+ fluxes across the tumor cell membranes, disrupting pH signatures inherent in tumor progression, resulting in reprogrammed cell death and metastasis inhibition.

General significance

The work represents a new mechanistic strategy for contention of melanoma, the most aggressive and deadly form of cutaneous neoplasm, and highlights Myrtenal, other related monoterpenes and derivatives as promising proton pump inhibitors with high chemotherapeutic potential.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号