首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   943篇
  免费   58篇
  2023年   6篇
  2022年   12篇
  2021年   20篇
  2020年   18篇
  2019年   19篇
  2018年   29篇
  2017年   17篇
  2016年   32篇
  2015年   50篇
  2014年   34篇
  2013年   69篇
  2012年   76篇
  2011年   75篇
  2010年   48篇
  2009年   49篇
  2008年   52篇
  2007年   53篇
  2006年   50篇
  2005年   58篇
  2004年   40篇
  2003年   31篇
  2002年   31篇
  2001年   8篇
  2000年   9篇
  1999年   10篇
  1998年   14篇
  1997年   8篇
  1996年   5篇
  1995年   6篇
  1994年   3篇
  1993年   8篇
  1992年   3篇
  1991年   5篇
  1990年   2篇
  1989年   4篇
  1988年   2篇
  1987年   2篇
  1986年   6篇
  1984年   3篇
  1983年   2篇
  1982年   5篇
  1981年   6篇
  1980年   5篇
  1978年   2篇
  1977年   3篇
  1976年   3篇
  1966年   1篇
  1965年   1篇
  1963年   1篇
  1906年   1篇
排序方式: 共有1001条查询结果,搜索用时 15 毫秒
21.
General principles about the consequences of seed dispersal by animals for the structure and dynamics of plant populations and communities remain elusive. This is in part because seed deposition patterns emerge from interactions between frugivore behaviour and the distribution of food resources, both of which can vary over space and time. Here we advocate a frugivore‐centred, process‐based, synthetic approach to seed dispersal research that integrates seed dispersal ecology and animal movement across multiple spatio‐temporal scales. To guide this synthesis, we survey existing literature using paradigms from seed dispersal and animal movement. Specifically, studies are discussed with respect to five criteria: selection of focal organisms (animal or plant); measurement of animal movement; characterization of seed shadow; animal, plant and environmental factors included in the study; and scales of the study. Most studies focused on either frugivores or plants and characterized seed shadows directly by combining gut retention time with animal movement data or indirectly by conducting maternity analysis of seeds. Although organismal traits and environmental factors were often measured, they were seldom used to characterize seed shadows. Multi‐scale analyses were rare, with seed shadows mostly characterized at fine spatial scales, over single fruiting seasons, and for individual dispersers. Novel animal‐ and seed‐tracking technologies, remote environmental monitoring tools, and advances in analytical methods can enable effective implementation of a hierarchical mechanistic approach to the study of seed dispersal. This kind of mechanistic approach will provide novel insights regarding the complex interplay between the factors that modulate animal behaviour and subsequently influence seed dispersal patterns across spatial and temporal scales.  相似文献   
22.
ObjectivesTo estimate the prevalence of obesity and overweight in children and adolescents in our city and to investigate the associated factors.Subjects and methodsA cross-sectional study of 1317 children and adolescents aged 2-16 years. Multistage probability sampling was used to select three groups of subjects: 411 aged 12 to 16 years, 504 aged 6 to 12 years, and 402 aged 2 to 6 years. Body mass index was calculated, and obesity and overweight were diagnosed using the threshold levels of the International Obesity Task Force for children and adolescents. Parents were asked about eating habits, health, social, and demographic aspects. Results are given as percentages (95% confidence interval). The relationship between obesity and overweight and the different variables was studied using multiple logistic regression. The adjusted odds ratio (OR) was calculated.ResultsAmong children and adolescentes aged 2-16 years, 9.5% (8.0%-11.0%) were obese and 22.4% (23.3%-24.6%) were overweight. Of subjects aged 12-16 years, 8.5% (5.9%-11.2%) were obese and 20.5% (16.7%-24.3%) were overweight. In the groups aged 6-12 years and 2-6 years, rates of obesity and overweight were 11.6% (8.9% -14.3%) and 31.0% (27.0-35.0) and 8.0% (5.4%-10.6%) and 13.6% (10.3%-16.9%) respectively. Obesity or overweight was associated to age (OR 1.21; P< 0.001), maternal obesity (OR 10.99; P= 0.008), a birthweight higher than 4 kg (OR 2.91; p 0.002), and formula feeding (OR 1.82; P= 0.005).ConclusionObesity and overweight in children and adolescents are highly prevalent problems in our city.  相似文献   
23.
24.
Octopus mimus is an important cephalopod species in the coastal zone of Peru and Chile that is exposed to temperature variations from time to time due to El Niño/Southern Oscillation (ENSO) episodes when surface temperatures can reach 24 °C, 6 °C above typical temperatures in their habitat. The relationships between temperature and food availability are important factors that determine the recruitment of juveniles into the O. mimus population. The present study was to evaluate the relationship between thermoregulatory behavior and the age of paralarvae (summer population) to determine whether changes in this behavior occur during internal yolk consumption, making larvae more vulnerable to environmental temperature change. Oxygen consumption of paralarvae when 1–4 d old was determined to establish if respiration could be used to monitor the physiological changes that occur during yolk consumption. Horizontal thermal selection (17–30 °C), critical thermal maxima (CTMax), minima (CTMin), and oxygen consumption experiments were conducted with fasting paralarvae 1–4 d old at 20 °C. Preferred temperatures were dependent on the age of O. mimus paralarvae. One day old paralarvae selected a temperature 1.1 °C (23·4 °C) higher than 2 – 4 d old paralarvae (22·3 °C). The CTMax of paralarvae increased with age with values of 31·9±1.1 °C in 1-d-olds and 33·4±0.3 to 4-d-olds. CTMin also changed with age with low values in 2-d-old paralarvae (9.1±1·3 °C) and 11·9±0·9 °C in 4-d-old animals. The temperature tolerance range of paralarvae was age-dependent (TTD=difference between CTMax and CTMin) with higher values in 2 and 3 d old paralarvae (25–26 °C) as compared to 1 d old (23·1 °C) and 4 d old animals (22.7 °C). Oxygen consumption was not affected by the age of paralarvae, suggesting that mechanisms exist that compensate their metabloism until at least 4 d of age. The temperature tolerance range of a planktonic paralarvae of octopus species is presented for the first time. This range was dependent on the age of paralarvae, and so rendered the paralarvae more vunerable to a combination of high temperature and food deprivation during first days of life. Results in the present study provide evidence that O. mimus could be under ecological pressure if a climate change causes increased or decreased temperatures into their distribution range.  相似文献   
25.
Total pollen production per inflorescence was studied in the most important species of the Poaceae family in the city of Córdoba in order to further our knowledge of the partial contribution of each species of this family to the total amount of pollen released into the atmosphere.

The contribution of grasses in a given area was estimated by counting the number of inflorescences in an area of one square meter. Four different representative areas of the city were selected. The number of pollen grains per anther and flowers per inflorescence was also estimated in order to obtain total pollen production per inflorescence.

Pollen production per inflorescence ranged from 14,500 to more than 22,000,000 pollen grains, the amount being clearly higher in the perennial species. Pollen production per square meter was higher in the mountains near the city and lower in areas of abandoned crops.

Only a few species are responsible for the majority of pollen produced. A phenological study is necessary in order to determine the temporal distribution of this pollen production and subsequent shedding.  相似文献   
26.
Potential pollen production, viability and germination were studied in the most important species of Quercus in the mountains of Córdoba to determine the contribution of each species to the total amount of airborne pollen. The results were compared over two consecutive years with different rainfall patterns. The viability of pollen grains was determined at anther opening, and during the pollination period, in order to determine potential pollination capacity. Results indicated that there were differences in the number of pollen grains produced by stamen in the four species. Equally, there were differences in the number of flowers among the species, being Q. suber the species with higher number of catkins groups and flowers per individual tree. Total pollen production per tree can be summarized in the following proportion: 1: 3: 3: 6 (Q. coccifera, Q. ilex ssp. ballota, Q. faginea and Q. suber). Potential pollen viability was estimated using the Fluorochromatic Reaction (FCR) and a germination assay. The results have shown that Quercus potential pollen viability is high and declines slowly with time. Q. coccifera was the species with the highest percentage of germination, with Q. suber being the lowest.  相似文献   
27.
Neutral and niche theories give contrasting explanations for the maintenance of tropical tree species diversity. Both have some empirical support, but methods to disentangle their effects have not yet been developed. We applied a statistical measure of spatial structure to data from 14 large tropical forest plots to test a prediction of niche theory that is incompatible with neutral theory: that species in heterogeneous environments should separate out in space according to their niche preferences. We chose plots across a range of topographic heterogeneity, and tested whether pairwise spatial associations among species were more variable in more heterogeneous sites. We found strong support for this prediction, based on a strong positive relationship between variance in the spatial structure of species pairs and topographic heterogeneity across sites. We interpret this pattern as evidence of pervasive niche differentiation, which increases in importance with increasing environmental heterogeneity.  相似文献   
28.
29.
30.
Naturally regenerating and restored second growth forests account for over 70% of tropical forest cover and provide key ecosystem services. Understanding climate change impacts on successional trajectories of these ecosystems is critical for developing effective large‐scale forest landscape restoration (FLR) programs. Differences in environmental conditions, species composition, dynamics, and landscape context from old growth forests may exacerbate climate impacts on second growth stands. We compile data from 112 studies on the effects of natural climate variability, including warming, droughts, fires, and cyclonic storms, on demography and dynamics of second growth forest trees and identify variation in forest responses across biomes, regions, and landscapes. Across studies, drought decreases tree growth, survival, and recruitment, particularly during early succession, but the effects of temperature remain unexplored. Shifts in the frequency and severity of disturbance alter successional trajectories and increase the extent of second growth forests. Vulnerability to climate extremes is generally inversely related to long‐term exposure, which varies with historical climate and biogeography. The majority of studies, however, have been conducted in the Neotropics hindering generalization. Effects of fire and cyclonic storms often lead to positive feedbacks, increasing vulnerability to climate extremes and subsequent disturbance. Fragmentation increases forests’ vulnerability to fires, wind, and drought, while land use and other human activities influence the frequency and intensity of fire, potentially retarding succession. Comparative studies of climate effects on tropical forest succession across biogeographic regions are required to forecast the response of tropical forest landscapes to future climates and to implement effective FLR policies and programs in these landscapes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号