首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   949篇
  免费   47篇
  996篇
  2023年   6篇
  2022年   10篇
  2021年   19篇
  2020年   16篇
  2019年   20篇
  2018年   21篇
  2017年   15篇
  2016年   29篇
  2015年   48篇
  2014年   33篇
  2013年   67篇
  2012年   80篇
  2011年   75篇
  2010年   40篇
  2009年   48篇
  2008年   53篇
  2007年   54篇
  2006年   52篇
  2005年   55篇
  2004年   41篇
  2003年   28篇
  2002年   33篇
  2001年   11篇
  2000年   9篇
  1999年   8篇
  1998年   13篇
  1997年   9篇
  1996年   6篇
  1995年   6篇
  1994年   4篇
  1993年   7篇
  1992年   5篇
  1991年   7篇
  1990年   2篇
  1989年   5篇
  1988年   4篇
  1987年   3篇
  1986年   8篇
  1984年   4篇
  1983年   2篇
  1982年   6篇
  1981年   6篇
  1980年   5篇
  1978年   2篇
  1977年   3篇
  1976年   3篇
  1974年   2篇
  1973年   2篇
  1966年   3篇
  1906年   1篇
排序方式: 共有996条查询结果,搜索用时 0 毫秒
31.
32.
A power conversion efficiency (PCE) as high as 19.7% is achieved using a novel, low‐cost, dopant‐free hole transport material (HTM) in mixed‐ion solution‐processed perovskite solar cells (PSCs). Following a rational molecular design strategy, arylamine‐substituted copper(II) phthalocyanine (CuPc) derivatives are selected as HTMs, reaching the highest PCE ever reported for PSCs employing dopant‐free HTMs. The intrinsic thermal and chemical properties of dopant‐free CuPcs result in PSCs with a long‐term stability outperforming that of the benchmark doped 2,2′,7,7′‐Tetrakis‐(N,N‐di‐p‐methoxyphenylamine)‐9,9′‐Spirobifluorene (Spiro‐OMeTAD)‐based devices. The combination of molecular modeling, synthesis, and full experimental characterization sheds light on the nanostructure and molecular aggregation of arylamine‐substituted CuPc compounds, providing a link between molecular structure and device properties. These results reveal the potential of engineering CuPc derivatives as dopant‐free HTMs to fabricate cost‐effective and highly efficient PSCs with long‐term stability, and pave the way to their commercial‐scale manufacturing. More generally, this case demonstrates how an integrated approach based on rational design and computational modeling can guide and anticipate the synthesis of new classes of materials to achieve specific functions in complex device structures.  相似文献   
33.
34.

Nitrogen (N) inputs from atmospheric deposition can increase soil organic carbon (SOC) storage in temperate and boreal forests, thereby mitigating the adverse effects of anthropogenic CO2 emissions on global climate. However, direct evidence of N-induced SOC sequestration from low-dose, long-term N addition experiments (that is, addition of < 50 kg N ha−1 y−1 for > 10 years) is scarce worldwide and virtually absent for European temperate forests. Here, we examine how tree growth, fine roots, physicochemical soil properties as well as pools of SOC and soil total N responded to 20 years of regular, low-dose N addition in two European coniferous forests in Switzerland and Denmark. At the Swiss site, the addition of 22 kg N ha−1 y−1 (or 1.3 times throughfall deposition) stimulated tree growth, but decreased soil pH and exchangeable calcium. At the Danish site, the addition of 35 kg N ha−1 y−1 (1.5 times throughfall deposition) impaired tree growth, increased fine root biomass and led to an accumulation of N in several belowground pools. At both sites, elevated N inputs increased SOC pools in the moderately decomposed organic horizons, but decreased them in the mineral topsoil. Hence, long-term N addition led to a vertical redistribution of SOC pools, whereas overall SOC storage within 30 cm depth was unaffected. Our results imply that an N-induced shift of SOC from older, mineral-associated pools to younger, unprotected pools might foster the vulnerability of SOC in temperate coniferous forest soils.

  相似文献   
35.
36.
Endophytes contribute to plant performance, especially under harsh conditions. We therefore hypothesized that wild plants have retained beneficial endophytes that are less abundant or not present in related crop plants. To test this hypothesis, we selected two endophytes that were found in Sharon goatgrass, an ancestor of wheat, and tested their effect on bread wheat. Both endophytes infected wheat and improved sustainability and performance under water-limited conditions. To determine how the endophytes modify plant development, we measured parameters of plant growth and physiological status and performed a comparative metabolomics analysis. Endophyte-treated wheat plants had reduced levels of stress damage markers and reduced accumulation of stress-adaptation metabolites. Metabolomics profiling revealed significant differences in the response to water stress of endophyte-treated plants compared with untreated plants. Our results demonstrate the potential of endophytes from wild plants for improvement of related crops and show that the beneficial effects of two endophytes are associated with alteration of physiological responses to water-limited conditions.  相似文献   
37.
38.
Pseudomonas aeruginosa is an opportunistic pathogen, intrinsically resistant to many antibiotics and prone to acquire resistance against many drugs. It is assumed that agents that disorganise the structure of the outer membrane might allow the passage of other drugs into cell. To verify this hypothesis, ceftazidime (CAZ) has been tested in association with glycopeptides (GLYs) and azithromycin (AZI). Time-kill experiments were performed on a representative strain. CAZ in combination with GLYs showed 99, 90 and 10% of CFU/ml reduction in 33.9,52.5 and 13.6% of the cases, respectively; the addition of AZI increased the incidence of 99% CFU/ml reduction to 42% of the cases. Indifference was the most common finding, and additive/synergism in the other cases. Present findings demonstrated that CAZ favourably reacted with GLYs in the presence of AZI.  相似文献   
39.
The plasma membrane-associated sialidase NEU3 is known to play important roles in different physiological and pathophysiological processes such as proliferation, cellular differentiation and tumorigenesis. Up-regulation of NEU3 has been associated to several tumors and recently it was demonstrated that its down-modulation in glioblastoma cells promotes cell invasiveness. To date, no information concerning the possible role played by NEU3 in relation to tumor radioresistance is available. Here we show that overexpression of NEU3 in glioblastoma U87MG cells activates PI3K/Akt signaling pathway resulting in an increased radioresistance capacity and in an improved efficiency of double strand DNA-repair mechanisms after irradiation. Our results demonstrate for the first time that NEU3 contributes to the radioresistance features of U87MG cells, bringing to evidence a novel rand peculiar role of the enzyme in cancer biology.  相似文献   
40.
Plant Cell, Tissue and Organ Culture (PCTOC) - The employment of biotechnology-based approaches such as somatic embryogenesis has been applied to several plants including Coffea sp. Despite the...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号