首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   864篇
  免费   45篇
  2023年   5篇
  2022年   10篇
  2021年   18篇
  2020年   16篇
  2019年   18篇
  2018年   20篇
  2017年   14篇
  2016年   27篇
  2015年   45篇
  2014年   31篇
  2013年   56篇
  2012年   73篇
  2011年   70篇
  2010年   40篇
  2009年   46篇
  2008年   51篇
  2007年   53篇
  2006年   48篇
  2005年   54篇
  2004年   37篇
  2003年   26篇
  2002年   31篇
  2001年   6篇
  2000年   6篇
  1999年   7篇
  1998年   13篇
  1997年   8篇
  1996年   5篇
  1995年   6篇
  1994年   3篇
  1993年   7篇
  1992年   3篇
  1991年   5篇
  1989年   4篇
  1988年   2篇
  1987年   2篇
  1986年   6篇
  1984年   3篇
  1983年   2篇
  1982年   5篇
  1981年   6篇
  1980年   5篇
  1978年   2篇
  1977年   3篇
  1976年   3篇
  1973年   1篇
  1966年   1篇
  1965年   1篇
  1963年   1篇
  1906年   1篇
排序方式: 共有909条查询结果,搜索用时 62 毫秒
81.
In the present study, we demonstrated that Ang II provokes a transitory enhancement of focal adhesion kinase (FAK) and paxillin phosphorylation in human umbilical endothelial cells (HUVEC). Moreover, Ang II induces a time- and dose-dependent augmentation in cell migration, but does not affect HUVEC proliferation. The effect of Ang II on FAK and paxillin phosphorylation was markedly attenuated in cells pretreated with wortmannin and LY294002, indicating that phosphoinositide 3-kinase (PI3K) plays an important role in regulating FAK activation. Similar results were observed when HUVEC were pretreated with genistein, a non-selective tyrosine kinases inhibitor, or with the specific inhibitor PP2 for Src family kinases, demonstrating the involvement of protein tyrosine kinases, and particularly Src family of tyrosine kinases, in the downstream signalling pathway of Ang II receptors. Furthermore, FAK and paxillin phosphorylation was markedly blocked after treatment of HUVEC with AG1478, a selective inhibitor of epidermal growth factor receptor (EGFR) phosphorylation. Pretreatment of cells with inhibitors of PI3K, Src family tyrosine kinases, and EGFR also decreased HUVEC migration. In conclusion, these results suggest that Ang II mediates an increase in FAK and paxillin phosphorylation and induces HUVEC migration through signal transduction pathways dependent on PI3K and Src tyrosine kinase activation and EGFR transactivation.  相似文献   
82.
The cytoskeletal protein talin binds to a short C-terminal sequence in phosphatidylinositol phosphate kinase type Igamma (PIPKIgamma), activating the enzyme and promoting the local production of phosphatidylinositol 4,5 bisphosphate, which regulates focal adhesion dynamics as well as clathrin-mediated endocytosis in neuronal cells. Here we show by crystallographic, NMR, and calorimetric analysis that the phosphotyrosine binding (PTB)-like domain of talin engages the PIPKIgamma C terminus in a mode very similar to that of integrin binding. However, PIPKIgamma binds in the canonical PTB-peptide mode with an SPLH motif replacing the classic NPXY motif. The tighter packing of the SPLH motif against the hydrophobic core of talin may explain the stronger binding of PIPKIgamma. Two tyrosine residues flanking the SPLH motif (Tyr-644 and Tyr-649) have been implicated in the regulation of talin binding. We show that phosphorylation at Tyr-644, a Src phosphorylation site in vivo, has little effect on the binding mode or strength, which is consistent with modeling studies in which the phosphotyrosine makes surface-exposed salt bridges, and we suggest that its strong activating effect arises from the release of autoinhibitory restraints in the full-length PIPKIgamma. Modeling studies suggest that phosphorylation of Tyr-649 will likewise have little effect on talin binding, whereas phosphorylation of the SPLH serine is predicted to be strongly disruptive. Our data are consistent with the proposal that Src activity promotes a switch from integrin binding to PIPKIgamma binding that regulates focal adhesion turnover.  相似文献   
83.
Onconase (ONC), a member of the RNase A superfamily extracted from oocytes of Rana pipiens, is an effective cancer killer. It is currently used in treatment of various forms of cancer. ONC antitumor properties depend on its ribonucleolytic activity that is low in comparison with other members of the superfamily. The most damaging side effect from Onconase treatment is renal toxicity, which seems to be caused by the unusual stability of the enzyme. Therefore, mutants with reduced thermal stability and/or increased catalytic activity may have significant implications for human cancer chemotherapy. In this context, we have determined the crystal structures of two Onconase mutants (M23L-ONC and C87S,des103-104-ONC) and performed molecular dynamic simulations of ONC and C87S,des103-104-ONC with the aim of explaining on structural grounds the modifications of the activity and thermal stability of the mutants. The results also provide the molecular bases to explain the lower catalytic activity of Onconase compared with RNase A and the unusually high thermal stability of the amphibian enzyme.  相似文献   
84.
Siah1 is the central component of a multiprotein E3 ubiquitin ligase complex that targets beta-catenin for destruction in response to p53 activation. The E3 complex comprises, in addition to Siah1, Siah-interacting protein (SIP), the adaptor protein Skp1, and the F-box protein Ebi. Here we show that SIP engages Siah1 by means of two elements, both of which are required for mediating beta-catenin destruction in cells. An N-terminal dimerization domain of SIP sits across the saddle-shaped upper surface of Siah1, with two extended legs packing against the sides of Siah1 by means of a consensus PXAXVXP motif that is common to a family of Siah-binding proteins. The C-terminal domain of SIP, which binds to Skp1, protrudes from the lower surface of Siah1, and we propose that this surface provides the scaffold for bringing substrate and the E2 enzyme into apposition in the functional complex.  相似文献   
85.
Recombinant human cytosolic sialidase (HsNEU2), expressed in Escherichia coli, was purified to homogeneity, and its substrate specificity was studied. HsNEU2 hydrolyzed 4-methylumbelliferyl alpha-NeuAc, alpha 2-->3 sialyllactose, glycoproteins (fetuin, alpha-acid glycoprotein, transferrin, and bovine submaxillary gland mucin), micellar gangliosides GD1a, GD1b, GT1b, and alpha 2-->3 paragloboside, and vesicular GM3. alpha 2-->6 sialyllactose, colominic acid, GM1 oligosaccharide, whereas micellar GM2 and GM1 were resistant. The optimal pH was 5.6, kinetics Michaelis-Menten type, V(max) varying from 250 IU/mg protein (GD1a) to 0.7 IU/mg protein (alpha(1)-acid glycoprotein), and K(m) in the millimolar range. HsNEU2 was activated by detergents (Triton X-100) only with gangliosidic substrates; the change of GM3 from vesicular to mixed micellar aggregation led to a 8.5-fold V(max) increase. HsNEU2 acted on gangliosides (GD1a, GM1, and GM2) at nanomolar concentrations. With these dispersions (studied in detailed on GM1), where monomers are bound to the tube wall or dilutedly associated (1:2000, mol/mol) to Triton X-100 micelles, the V(max) values were 25 and 72 microIU/mg protein, and K(m) was 10 and 15 x 10(-9) m, respectively. Remarkably, GM1 and GM2 were recognized only as monomers. HsNEU2 worked at pH 7.0 with an efficiency (compared with that at pH 5.6) ranging from 4% (on GD1a) to 64% (on alpha(1)-acid glycoprotein), from 7% (on GD1a) to 45% (on GM3) in the presence of Triton X-100, and from 30 to 40% on GM1 monomeric dispersion. These results show that HsNEU2 differentially recognizes the type of sialosyl linkage, the aglycone part of the substrate, and the supramolecular organization (monomer/micelle/vesicle) of gangliosides. The last ability might be relevant in sialidase interactions with gangliosides under physiological conditions.  相似文献   
86.
87.
Although the route of sensitization to food allergens is still the subject of debate, it is generally accepted the gut immune system plays a pivotal role. However, hitherto the transport of allergens across the normal, pre-sensitized gut epithelium remained largely unknown. Our aim was to identify the route through which protein bodies and soluble proteins from digested peanuts penetrated the pre-sensitized gut epithelium in vivo and the specific cell types involved in the transport. Digestion of peanuts released a large number of protein bodies that are exclusively transported across the epithelium by specialized antigen-sampling M cells and delivered to the lymphoid tissue of Peyer's patch. Intracellular transport of soluble protein also occurred almost exclusively via M cells and it was negligible across absorptive enterocytes. We hypothesize that these conditions which are known to favour strongly the induction of immune responses rather than oral tolerance may play a significant role in the genesis of allergic reactions.  相似文献   
88.
In this paper we evaluated the influence of the protein concentration and a formulation vehicle on the stability of recombinant human Interferon alpha 2b (rhIFN-alpha2b) in solution. The effect of the protein content (from 1 to 100 MIU/ml) at 37 degrees C, showed that higher concentration of this cytokine protected against the loss of bioactivity (antiviral titration) better than the lower concentrations. In contrast, rhIFN-alpha2b at 50 and 100 MIU/ml decreased the SDS/PAGE- and RP-HPLC-determined purity faster than samples at 1 or 10 MIU/ml. According to these results, 10 MIU/ml rhIFN-alpha2b was the best choice to evaluate the influence of a formulation on the stability of this cytokine. Taking this into consideration, we studied the stability of a liquid and albumin-free formulation of this protein at the recommended storage temperature (5+/-3 degrees C) and under accelerated conditions (28+/-2 degrees C). Accelerated storage results showed an acceptable biochemical stability of the active ingredient throughout 2 months. Real-time storage data confirmed the good biochemical stability of this formulation for 30 months.  相似文献   
89.
Anaerobic digesters have been responsible for the removal of large fraction of organic matter (mineralization of waste sludge) in conventional aerobic sewage treatment plants since the early years of domestic sewage treatment (DST). Attention on the anaerobic technology for improving the sustainability of sewage treatment has been paid mainly after the energy crisis in the 1970s. The successful use of anaerobic reactors (especially up-flow anaerobic sludge blanket (UASB) reactors) for the treatment of raw domestic sewage in tropical and sub-tropical regions (where ambient temperatures are not restrictive for anaerobic digestion) opened the opportunity to substitute the aerobic processes for the anaerobic technology in removal of the influent organic matter. Despite the success, effluents from anaerobic reactors treating domestic sewage require post-treatment in order to achieve the emission standards prevailing in most countries. Initially, the composition of this effluent rich in reduced compounds has required the adoption of post-treatment (mainly aerobic) systems able to remove the undesirable constituents. Currently, however, a wealth of information obtained on biological and physical-chemical processes related to the recovery or removal of nitrogen, phosphorus and sulfur compounds creates the opportunity for new treatment systems. The design of DST plant with the anaerobic reactor as core unit coupled to the pre- and post-treatment systems in order to promote the recovery of resources and the polishing of effluent quality can improve the sustainability of treatment systems. This paper presents a broader view on the possible applications of anaerobic treatment systems not only for organic matter removal but also for resources recovery aiming at the improvement of the sustainability of DST.  相似文献   
90.
Bioremediation strategies use microorganisms to remove hazardous substances, such as aromatic molecules, from polluted sites. The applicability of these techniques would greatly benefit from the expansion of the catabolic ability of these bacteria in transforming a variety of aromatic compounds. Catechol-2,3-dioxygenase (C2,3O) from Pseudomonas stutzeri OX1 is a key enzyme in the catabolic pathway for aromatic molecules. Its specificity and regioselectivity control the range of molecules degraded through the catabolic pathway of the microorganism that is able to use aromatic hydrocarbons as growth substrates. We have used in silico substrate docking procedures to investigate the molecular determinants that direct the enzyme substrate specificity. In particular, we looked for a possible molecular explanation of the inability of catechol-2,3-dioxygenase to cleave 3,5-dimethylcatechol and 3,6-dimethylcatechol and of the efficient cleavage of 3,4-dimethylcatechol. The docking study suggested that reduction in the volume of the side chain of residue 249 could allow the binding of 3,5-dimethylcatechol and 3,6-dimethylcatechol. This information was used to prepare and characterize mutants at position 249. The kinetic and regiospecificity parameters of the mutants confirm the docking predictions, and indicate that this position controls the substrate specificity of catechol-2,3-dioxygenase. Moreover, our results suggest that Thr249 also plays a previously unsuspected role in the catalytic mechanism of substrate cleavage. The hypothesis is advanced that a water molecule bound between one of the hydroxyl groups of the substrate and the side chain of Thr249 favors the deprotonation/protonation of this hydroxyl group, thus assisting the final steps of the cleavage reaction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号