全文获取类型
收费全文 | 3823篇 |
免费 | 365篇 |
专业分类
4188篇 |
出版年
2021年 | 52篇 |
2019年 | 41篇 |
2018年 | 44篇 |
2017年 | 43篇 |
2016年 | 62篇 |
2015年 | 124篇 |
2014年 | 107篇 |
2013年 | 142篇 |
2012年 | 232篇 |
2011年 | 242篇 |
2010年 | 138篇 |
2009年 | 138篇 |
2008年 | 206篇 |
2007年 | 232篇 |
2006年 | 234篇 |
2005年 | 199篇 |
2004年 | 232篇 |
2003年 | 198篇 |
2002年 | 198篇 |
2001年 | 58篇 |
2000年 | 27篇 |
1999年 | 42篇 |
1998年 | 50篇 |
1997年 | 43篇 |
1996年 | 46篇 |
1995年 | 32篇 |
1994年 | 45篇 |
1993年 | 28篇 |
1992年 | 29篇 |
1991年 | 27篇 |
1990年 | 20篇 |
1988年 | 21篇 |
1986年 | 31篇 |
1985年 | 28篇 |
1984年 | 42篇 |
1983年 | 31篇 |
1982年 | 51篇 |
1981年 | 40篇 |
1980年 | 37篇 |
1979年 | 32篇 |
1978年 | 26篇 |
1977年 | 26篇 |
1976年 | 34篇 |
1975年 | 31篇 |
1974年 | 29篇 |
1973年 | 29篇 |
1971年 | 19篇 |
1970年 | 19篇 |
1969年 | 22篇 |
1968年 | 21篇 |
排序方式: 共有4188条查询结果,搜索用时 16 毫秒
71.
Eugene V Koonin 《BMC biology》2010,8(1):2
Genomes of several yeast species contain integrated DNA copies of complete genomes or individual genes of non-retroviral double-strand RNA viruses as reported in a recent BMC Biology article by Taylor and Bruenn. The integrated virus-specific sequences are at least partially expressed and seem to evolve under pressure of purifying selection, indicating that these are functional genes. Together with similar reports on integrated copies of some animal RNA viruses, these results suggest that integration of DNA copies of non-reverse-transcribing RNA viruses might be much more common than previously thought. The integrated copies could contribute to acquired immunity to the respective viruses. 相似文献
72.
The division of labor between template and catalyst is a fundamental property of
all living systems: DNA stores genetic information whereas proteins function as
catalysts. The RNA world hypothesis, however, posits that, at the earlier stages
of evolution, RNA acted as both template and catalyst. Why would such division
of labor evolve in the RNA world? We investigated the evolution of DNA-like
molecules, i.e. molecules that can function only as template, in minimal
computational models of RNA replicator systems. In the models, RNA can function
as both template-directed polymerase and template, whereas DNA can function only
as template. Two classes of models were explored. In the surface models,
replicators are attached to surfaces with finite diffusion. In the compartment
models, replicators are compartmentalized by vesicle-like boundaries. Both
models displayed the evolution of DNA and the ensuing division of labor between
templates and catalysts. In the surface model, DNA provides the advantage of
greater resistance against parasitic templates. However, this advantage is at
least partially offset by the disadvantage of slower multiplication due to the
increased complexity of the replication cycle. In the compartment model, DNA can
significantly delay the intra-compartment evolution of RNA towards catalytic
deterioration. These results are explained in terms of the trade-off between
template and catalyst that is inherent in RNA-only replication cycles: DNA
releases RNA from this trade-off by making it unnecessary for RNA to serve as
template and so rendering the system more resistant against evolving parasitism.
Our analysis of these simple models suggests that the lack of catalytic activity
in DNA by itself can generate a sufficient selective advantage for RNA
replicator systems to produce DNA. Given the widespread notion that DNA evolved
owing to its superior chemical properties as a template, this study offers a
novel insight into the evolutionary origin of DNA. 相似文献
73.
The occlusion of capillary vessels results in low oxygen tension in adjacent tissues which triggers a signaling cascade that culminates in neovascularization. Using bovine retinal capillary endothelial cells (BRCEC), we investigated the effects of short-term hypoxia on DNA synthesis, phosphotyrosine induction, changes in the expression of basic fibroblast growth factor receptor (bFGFR), protein kinase C (PKCα), heat shock protein 70 (HSP70), and SH2-containing protein (SHC). The effect of protein tyrosine kinase (PTK) and phosphatase inhibitors on hypoxia-induced phosphotyrosine was also studied. Capillary endothelial cells cultured in standard normoxic (pO2 = 20%) conditions were quiesced in low serum containing medium and then exposed to low oxygen tension or hypoxia (pO2 = 3%) in humidified, 5% CO2, 37°C, tissue culture chambers, on a time-course of up to 24 h. DNA synthesis was potentiated by hypoxia in a time-dependent manner. This response positively correlated with the cumulative induction of phosphotyrosine and the downregulation of bFGFR (Mr ~ 85 kDa). Protein tyrosine kinase inhibitors, herbimycin-A, and methyl 2,5-dihydroxycinnamate, unlike genistein, markedly blocked hypoxia-induced phosphotyrosine. Prolonged exposure of cells to phosphatase inhibitor, sodium orthovanadate, also blocked hypoxia-induced phosphotyrosine. The expression of HSP70, PKCα, and SHC were not markedly altered by hypoxia. Taken together, these data suggest that short-term hypoxia activates endothelial cell proliferation in part via tyrosine phosphorylation of cellular proteins and changes in the expression of the FGF receptor. Thus, endothelial cell mitogenesis and neovascularization associated with low oxygen tension may be controlled by abrogating signaling pathways mediated by protein tyrosine kinase and phosphatases. © 1995 Wiley-Liss, Inc. 相似文献
74.
Glutamine (Gln), glutamate (Glu) and gamma-amino butyric acid (GABA) are essential amino acids for brain metabolism and function. Astrocytic-derived glutamine is the precursor of the two most important neurotransmitters: glutamate, an excitatory neurotransmitter, and GABA, an inhibitory neurotransmitter. In addition to their roles in neurotransmission these neurotransmitters act as alternative metabolic substrates that enable metabolic coupling between astrocytes and neurons. The relationships between Gln, Glu and GABA were studied under lead (Pb) toxicity conditions using synaptosomal fractions obtained from adult rat brains to investigate the cause of Pb neurotoxicity-induced seizures. We have found that diminished transport of [(14)C]GABA occurs after Pb treatment. Both uptake and depolarization-evoked release decrease by 40% and 30%, respectively, relative to controls. Lower expression of glutamate decarboxylase (GAD), the GABA synthesizing enzyme, is also observed. In contrast to impaired synaptosomal GABA function, the GABA transporter GAT-1 protein is overexpressed (possibly as a compensative mechanism). Furthermore, similar decreases in synaptosomal uptake of radioactive glutamine and glutamate are observed. However, the K(+)-evoked release of Glu increases by 20% over control values and the quantity of neuronal EAAC1 transporter for glutamate reaches remarkably higher levels after Pb treatment. In addition, Pb induces decreased activity of phosphate-activated glutaminase (PAG), which plays a role in glutamate metabolism. Most noteworthy is that the overexpression and reversed action of the EAAC1 transporter may be the cause of the elevated extracellular glutamate levels. In addition to the impairment of synaptosomal processes of glutamatergic and GABAergic transport, the results indicate perturbed relationships between Gln, Glu and GABA that may be the cause of altered neuronal-astrocytic interactions under conditions of Pb neurotoxicity. 相似文献
75.
76.
Kulig P Zabel BA Dubin G Allen SJ Ohyama T Potempa J Handel TM Butcher EC Cichy J 《Journal of immunology (Baltimore, Md. : 1950)》2007,178(6):3713-3720
Chemerin is an attractant for cells that express the serpentine receptor CMKLR1, which include immature plasmacytoid dendritic cells (pDC) and macrophages. Chemerin circulates in the blood where it exhibits low biological activity, but upon proteolytic cleavage of its C terminus, it is converted to a potent chemoattractant. Enzymes that contribute to this conversion include host serine proteases of the coagulation, fibrinolytic, and inflammatory cascades, and it has been postulated that recruitment of pDC and macrophages by chemerin may serve to balance local tissue immune and inflammatory responses. In this work, we describe a potent, pathogen-derived proteolytic activity capable of chemerin activation. This activity is mediated by staphopain B (SspB), a cysteine protease secreted by Staphylococcus aureus. Chemerin activation is triggered by growth medium of clinical isolates of SspB-positive S. aureus, but not by that of a SspB(null) mutant. C-terminal processing by SspB generates a chemerin isoform identical with the active endogenous attractant isolated from human ascites fluid. Interestingly, SspB is a potent trigger of chemerin even in the presence of plasma inhibitors. SspB may help direct the recruitment of specialized host cells, including immunoregulatory pDC and/or macrophages, contributing to the ability of S. aureus to elicit and maintain a chronic inflammatory state. 相似文献
77.
In the post-genomic era, proteomics together with genomic tools have led to powerful new strategies in basic and clinical research. These combined “omics” technologies are being integrated into the drug target discovery process. Unlike the genome, the proteome is a highly dynamic entity that requires techniques capable of analyzing on selected populations of proteins in specific biological conditions that reflect the proteins’ functional characteristics. Antibodies have become one of the most important reagents for the analysis of selected populations of proteins, and the application of phage-display antibody libraries to high-throughput antibody generation against large numbers of various antigens provides a tool for proteome-wide protein expression analysis. In this review, we will discuss the utility of phage-display antibodies in proteomics applications, specifically for the discovery of novel disease markers and therapeutic targets. 相似文献
78.
Summary Seven morphologically different types of neurosecretory granules have been found in the axon terminals of the sinus gland of the blue crab, Callinectes sapidus. They differ from each other in size, shape, staining characteristics, solubility characteristics, core matrix characteristics, axon terminal matrix characteristics, presence or absence of space between the granule membrane and granule core matrix, and frequency of occurrence. Five of the types are segregated in different axon terminals and are believed to represent different hormone-protein complexes. Two of the types, which have lost part or all of their granular contents, are thought to be variants of the other five types. The differences in granular morphology are better revealed by some fixation procedures than others. Palade's acetate-veronal buffered osmium tetroxide, in particular, reveals striking differences. The following observations suggest that different hormone-protein complexes are segregated in different axon terminals and that these complexes may be morphologically distinguished at the level of the electron microscope.Supported by USPHS-NIH Training Grant GM-00669 and Grant GB-7595X from the National Science Foundation. 相似文献
79.
Mavromatis K Ivanova N Barry K Shapiro H Goltsman E McHardy AC Rigoutsos I Salamov A Korzeniewski F Land M Lapidus A Grigoriev I Richardson P Hugenholtz P Kyrpides NC 《Nature methods》2007,4(6):495-500
Metagenomics is a rapidly emerging field of research for studying microbial communities. To evaluate methods presently used to process metagenomic sequences, we constructed three simulated data sets of varying complexity by combining sequencing reads randomly selected from 113 isolate genomes. These data sets were designed to model real metagenomes in terms of complexity and phylogenetic composition. We assembled sampled reads using three commonly used genome assemblers (Phrap, Arachne and JAZZ), and predicted genes using two popular gene-finding pipelines (fgenesb and CRITICA/GLIMMER). The phylogenetic origins of the assembled contigs were predicted using one sequence similarity-based (blast hit distribution) and two sequence composition-based (PhyloPythia, oligonucleotide frequencies) binning methods. We explored the effects of the simulated community structure and method combinations on the fidelity of each processing step by comparison to the corresponding isolate genomes. The simulated data sets are available online to facilitate standardized benchmarking of tools for metagenomic analysis. 相似文献
80.
Living in an enriched environment with complex physical and social stimulation leads to improved cognitive and metabolic health. In white fat, enrichment induced the upregulation of the brown fat cell fate determining gene Prdm16, brown fat-specific markers, and genes involved in thermogenesis and β-adrenergic signaling. Moreover, pockets of cells with prototypical brown fat morphology and high UCP1 levels were observed in the white fat of enriched mice associated with resistance to diet-induced obesity. Hypothalamic overexpression of BDNF reproduced the enrichment-associated activation of the brown fat gene program and lean phenotype. Inhibition of BDNF signaling by genetic knockout or dominant-negative trkB reversed this phenotype. Our genetic and pharmacologic data suggest a mechanism whereby induction of hypothalamic BDNF expression in response to environmental stimuli leads to selective sympathoneural modulation of white fat to induce "browning" and increased energy dissipation. 相似文献