首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5861篇
  免费   445篇
  6306篇
  2022年   57篇
  2021年   100篇
  2020年   43篇
  2019年   92篇
  2018年   101篇
  2017年   78篇
  2016年   146篇
  2015年   240篇
  2014年   230篇
  2013年   298篇
  2012年   442篇
  2011年   441篇
  2010年   268篇
  2009年   238篇
  2008年   363篇
  2007年   369篇
  2006年   318篇
  2005年   290篇
  2004年   305篇
  2003年   257篇
  2002年   236篇
  2001年   73篇
  2000年   55篇
  1999年   62篇
  1998年   57篇
  1997年   48篇
  1996年   47篇
  1995年   35篇
  1994年   45篇
  1993年   33篇
  1992年   37篇
  1991年   28篇
  1989年   21篇
  1988年   21篇
  1986年   32篇
  1985年   29篇
  1984年   42篇
  1983年   32篇
  1982年   53篇
  1981年   41篇
  1980年   37篇
  1979年   31篇
  1978年   25篇
  1977年   26篇
  1976年   32篇
  1975年   31篇
  1974年   26篇
  1973年   30篇
  1969年   22篇
  1968年   20篇
排序方式: 共有6306条查询结果,搜索用时 15 毫秒
111.
To explore the diversity of mobile genetic elements (MGE) associated with archaea of the phylum Thaumarchaeota, we exploited the property of most MGE to integrate into the genomes of their hosts. Integrated MGE (iMGE) were identified in 20 thaumarchaeal genomes amounting to 2 Mbp of mobile thaumarchaeal DNA. These iMGE group into five major classes: (i) proviruses, (ii) casposons, (iii) insertion sequence-like transposons, (iv) integrative-conjugative elements and (v) cryptic integrated elements. The majority of the iMGE belong to the latter category and might represent novel families of viruses or plasmids. The identified proviruses are related to tailed viruses of the order Caudovirales and to tailless icosahedral viruses with the double jelly-roll capsid proteins. The thaumarchaeal iMGE are all connected within a gene sharing network, highlighting pervasive gene exchange between MGE occupying the same ecological niche. The thaumarchaeal mobilome carries multiple auxiliary metabolic genes, including multicopper oxidases and ammonia monooxygenase subunit C (AmoC), and stress response genes, such as those for universal stress response proteins (UspA). Thus, iMGE might make important contributions to the fitness and adaptation of their hosts. We identified several iMGE carrying type I-B CRISPR-Cas systems and spacers matching other thaumarchaeal iMGE, suggesting antagonistic interactions between coexisting MGE and symbiotic relationships with the ir archaeal hosts.  相似文献   
112.
113.
Platycodin D (PD) is a major active component of the roots of Platycodon grandiflorum (Jacq.) A.DC. and possesses multiple biological and pharmacological properties, including anti-cancer activity. The aim of this study was to characterize PD-induced cytoplasmic vacuolation in human cancer cells and investigate the underlying mechanisms. PD-induced cancer cell death was associated with cytoplasmic pinocytic and autophagic vacuolation. Cellular energy levels were decreased by this compound, leading to the activation of AMP-activated protein kinase (AMPK). Additionally, compound C, an inhibitor of AMPK, completely prevented PD-induced vacuolation. These results suggest that PD induces cancer cell death, associated with excessive vacuolation through AMPK activation when cellular energy levels are low. Therefore, our findings provide a mechanistic rationale for a novel combinatorial approach using PD to treat cancer.  相似文献   
114.
There are three mammalian Golgi alpha1,2-mannosidases, encoded by different genes, that form Man5GlcNAc2 from Man(8-9)GlcNAc2 for the biosynthesis of hybrid and complex N-glycans. Northern blot analysis and in situ hybridization indicate that the three paralogs display distinct developmental and tissue-specific expression. The physiological role of Golgi alpha1,2-mannosidase IB was investigated by targeted gene ablation. The null mice have normal gross appearance at birth, but they display respiratory distress and die within a few hours. Histology of fetal lungs the day before birth indicate some delay in development, whereas neonatal lungs show extensive pulmonary hemorrhage in the alveolar region. No significant histopathological changes occur in other tissues. No remarkable ultrastructural differences are detected between wild type and null lungs. The membranes of a subset of bronchiolar epithelial cells are stained with lectins from Phaseolus vulgaris (leukoagglutinin and erythroagglutinin) and Datura stramonium in wild type lungs, but this staining disappears in lungs from null mice. Mass spectrometry of N-glycans from different tissues shows no significant changes in global N-glycans of null mice. Therefore, only a few glycoproteins required for normal lung function depend on alpha1,2-mannosidase IB for maturation. There are no apparent differences in the expression of several lung epithelial cell and endothelial cell markers between null and wild type mice. The alpha1,2-mannosidase IB null phenotype differs from phenotypes caused by ablation of other enzymes in N-glycan biosynthesis and from other mouse gene disruptions that affect pulmonary development and function.  相似文献   
115.
Focal adhesion kinase (FAK) mediates signal transduction in response to multiple extracellular inputs via tyrosine phosphorylation at specific residues. Although several tyrosine phosphorylation events have been linked to FAK activation and downstream signal transduction, the function of FAK phosphorylation at Tyr(407) was previously unknown. Here, we show for the first time that phosphorylation of FAK Tyr(407) increases during serum starvation, contact inhibition, and cell cycle arrest, all conditions under which activating FAK Tyr(397) phosphorylation decreases. Transfection of NIH3T3 cells with a phosphorylation-mimicking FAK 407E mutant decreased autophosphorylation at Tyr(397) and inhibited both FAK kinase activity in vitro and FAK-mediated functions such as cell adhesion, spreading, proliferation, and migration. The opposite effects were observed in cells transfected with nonphosphorylatable mutant FAK 407F. Taken together, these data suggest the novel concept that FAK Tyr(407) phosphorylation negatively regulates the enzymatic and biological activities of FAK.  相似文献   
116.
DNA Polymerase β is a multifunctional enzyme involved in base excision repair of nuclear DNA in vertebrate cells. We present here the first assignments of the full-length protein (335 residues, 39 kDa) in the presence of a double gap—double hairpin DNA (22 nucleotides, 7 kDa).  相似文献   
117.
Objective: The objective of this study was to investigate the association among adiposity, insulin resistance, and inflammatory markers [high‐sensitivity C‐reactive protein (hs‐CRP), interleukin (IL)‐6, and tumor necrosis factor (TNF)‐α] and adiponectin and to study the effects of exercise training on adiposity, insulin resistance, and inflammatory markers among obese male Korean adolescents. Research Methods and Procedures: Twenty‐six obese and 14 lean age‐matched male adolescents were studied. We divided the obese subjects into two groups: obese exercise group (N = 14) and obese control group (N = 12). The obese exercise group underwent 6 weeks of jump rope exercise training (40 min/d, 5 d/wk). Adiposity, insulin resistance, lipid profile, hs‐CRP, IL‐6, TNF‐α, and adiponectin were measured before and after the completion of exercise training. Results: The current study demonstrated higher insulin resistance, total cholesterol, LDL‐C levels, triglyceride, and inflammatory markers and lower adiponectin and HDL‐C in obese Korean male adolescents. Six weeks of increased physical activity improved body composition, insulin sensitivity, and adiponectin levels in obese Korean male adolescents without changes in TNF‐α, IL‐6, and hs‐CRP. Discussion: Obese Korean male adolescents showed reduced adiponectin levels and increased inflammatory cytokines. Six weeks of jump rope exercise improved triglyceride and insulin sensitivity and increased adiponectin levels.  相似文献   
118.
Exposure to high temperature or other stresses induces a synthesis of heat shock proteins. Many of these proteins are molecular chaperones and some of them help cells to cope with heat-induced denaturation and aggregation of other proteins. In the last decade, chaperones have received increased attention in connection with their role in maintenance and propagation of the Saccharomyces cerevisiae prions, infectious or heritable agents transmitted at the protein level. Recent data suggest that functioning of the chaperones in reactivation of heat-damaged proteins and in propagation of prions is based on the same molecular mechanisms but may lead to different consequences depending on the type of aggregate. In both cases the concerted and balanced action of “chaperones'' team,” including Hsp104, Hsp70, Hsp40 and possibly other proteins, determines whether a misfolded protein is to be incorporated into an aggregate, rescued to the native state or targeted for degradation.Key Words: Amyloid, Hsp40, Hsp70, Hsp104, stress response, yeast  相似文献   
119.
Primary Cell Wall Structure in the Evolution of Land Plants   总被引:4,自引:0,他引:4  
Investigation of the primary cell walls of lower plants improves our understanding of the cell biology of these organisms but also has the potential to improve our understanding of cell wall structure and function in angiosperms that evolved from lower plants. Cell walls were prepared from eight species, ranging from a moss to advanced gymnosperms, and subjected to sequential chemical extraction to separate the main polysaccharide fractions. The glycosyl compositions of these fractions were then determined by gas chromatography. The results were compared among the eight plants and among data from related studies reported in the existing published reports to identify structural features that have been either highly conserved or clearly modified during evolution. Among the highly conserved features are the presence of a cellulose framework, the presence of certain hemicelluloses such as xyloglucan, and the presence of rhamnogalacturonan II, a domain in pectic polysaccharides. Among the modified features are the abundance of mannosyl-containing hemicelluloses and the presence of methylated sugars.  相似文献   
120.
The rotary proton- and sodium-translocating ATPases are reversible molecular machines present in all cellular life forms that couple ion movement across membranes with ATP hydrolysis or synthesis. Sequence and structural comparisons of F- and V-type ATPases have revealed homology between their catalytic and membrane subunits, but not between the subunits of the central stalk that connects the catalytic and membrane components. Based on this pattern of homology, we propose that these ATPases originated from membrane protein translocases, which, themselves, evolved from RNA translocases. We suggest that in these ancestral translocases, the position of the central stalk was occupied by the translocated polymer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号