首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   206篇
  免费   5篇
  211篇
  2022年   1篇
  2021年   1篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2014年   4篇
  2013年   13篇
  2012年   8篇
  2011年   8篇
  2010年   5篇
  2009年   4篇
  2008年   16篇
  2007年   16篇
  2006年   12篇
  2005年   19篇
  2004年   14篇
  2003年   18篇
  2002年   12篇
  2001年   1篇
  2000年   3篇
  1999年   6篇
  1998年   4篇
  1996年   2篇
  1995年   4篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1991年   3篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   3篇
  1984年   3篇
  1983年   2篇
  1982年   3篇
  1981年   1篇
  1980年   3篇
  1978年   2篇
  1977年   2篇
  1974年   1篇
排序方式: 共有211条查询结果,搜索用时 0 毫秒
71.
The reticular network of the endoplasmic reticulum (ER) consists of tubular and lamellar elements and is arranged in the cortical region of plant cells. This network constantly shows shape change and remodeling motion. Tubular ER structures were formed when GTP was added to the ER vesicles isolated from tobacco (Nicotiana tabacum) cultured BY-2 cells expressing ER-localized green fluorescent protein. The hydrolysis of GTP during ER tubule formation was higher than that under conditions in which ER tubule formation was not induced. Furthermore, a shearing force, such as the flow of liquid, was needed for the elongation/extension of the ER tubule. The shearing force was assumed to correspond to the force generated by the actomyosin system in vivo. To confirm this hypothesis, the S12 fraction was prepared, which contained both cytosol and microsome fractions, including two classes of myosins, XI (175-kD myosin) and VIII (BY-2 myosin VIII-1), and ER-localized green fluorescent protein vesicles. The ER tubules and their mesh-like structures were arranged in the S12 fraction efficiently by the addition of ATP, GTP, and exogenous filamentous actin. The tubule formation was significantly inhibited by the depletion of 175-kD myosin from the S12 fraction but not BY-2 myosin VIII-1. Furthermore, a recombinant carboxyl-terminal tail region of 175-kD myosin also suppressed ER tubule formation. The tips of tubules moved along filamentous actin during tubule elongation. These results indicated that the motive force generated by the actomyosin system contributes to the formation of ER tubules, suggesting that myosin XI is responsible not only for the transport of ER in cytoplasm but also for the reticular organization of cortical ER.  相似文献   
72.
73.
The reaction of rat liver microsomes with Fe(3+), ADP and NADPH was examined using EPR, HPLC-EPR and HPLC-EPR-MS combined use of spin trapping technique. A prominent EPR spectrum (alpha(N) = 1.58 mT and alpha(H)beta = 0.26 mT) was observed in the complete reaction mixture. The EPR spectrum was hardly observed for the complete reaction mixture without rat liver microsomes. The radicals appear to be derived from microsomal components. The EPR spectrum was also hardly observed in the absence of Fe(3+). Addition of some iron chelators such as EDTA, citrate and ADP resulted in the dramatic change in the EPR intensity. Iron ions seem to be essential for this reaction. For the complete reaction mixture with boiled microsomes, a weak EPR spectrum was observed, suggesting that enzymes participate in the reaction. Five peaks were separated on the HPLC-EPR elution profile of the complete reaction mixture of rat liver microsomes with ADP, Fe(3+) and NADPH. The retention times of the peaks 1 to 5 were 19.4, 22.5, 27.3, 29.8 and 31.4 min, respectively. To identify the radical adducts, HPLC-EPR-MS analyses were performed for the three prominent peaks. The HPLC-EPR-MS analyses showed that a new radical adduct, 4-POBN/1-hydroxypentyl radical, in addition to 4-POBN/ethyl radical adducts, forms in a reaction mixture of rat liver microsomes with ADP, Fe(3+) and NADPH.  相似文献   
74.
75.
76.
In this study, we have developed a novel method to identify isothiocyanate (ITC)-targeted molecules using two well-studied ITCs: benzyl ITC (BITC) and phenethyl ITC (PEITC). The principle of this method is based on identifying a pattern of differences between BITC and PEITC given that they show similar chemical and biological behaviors. For method validation, dithiothreitol-reduced bovine insulin as a model molecule was incubated with either BITC or PEITC, and digested peptides were analyzed by ultra-performance liquid chromatography time-of-flight mass spectrometry (UPLC-TOF-MS) and liquid chromatography quadrupole TOF-MS (LC-Q-TOF-MS). Three peptides-NYCN, FVNQHLCGSHLVE, and ALYLVCGE-were identified as being adducted with BITC or PEITC on their cysteine residues. Each set of peptides adducted with either BITC or PEITC showed retention times (RT(BITC)相似文献   
77.
Association of cellular influences and physical and chemical properties were examined for 24 kinds of industrial metal oxide nanoparticles: ZnO, CuO, NiO, Sb(2)O(3), CoO, MoO(3), Y(2)O(3), MgO, Gd(2)O(3), SnO(2), WO(3), ZrO(2), Fe(2)O(3), TiO(2), CeO(2), Al(2)O(3), Bi(2)O(3), La(2)O(3), ITO, and cobalt blue pigments. We prepared a stable medium dispersion for each nanoparticle and examined the influence on cell viability and oxidative stress together with physical and chemical characterizations. ZnO, CuO, NiO, MgO, and WO(3) showed a large amount of metal ion release in the culture medium. The cellular influences of these soluble nanoparticles were larger than insoluble nanoparticles. TiO(2), SnO(2), and CeO(2) nanoparticles showed strong protein adsorption ability; however, cellular influences of these nanoparticles were small. The primary particle size and the specific surface area seemed unrelated to cellular influences. Cellular influences of metal oxide nanoparticles depended on the kind and concentrations of released metals in the solution. For insoluble nanoparticles, the adsorption property was involved in cellular influences. The primary particle size and specific surface area of metal oxide nanoparticles did not affect directly cellular influences. In conclusion the most important cytotoxic factor of metal oxide nanoparticles was metal ion release.  相似文献   
78.
The role of vitamin E in the CNS has not been fully elucidated. In the present study, we found that pre-treatment with vitamin E analogs including alphaT (alpha-tocopherol), alphaT3 (alpha -tocotrienol), gammaT, and gammaT3 for 24 h prevented the cultured cortical neurons from cell death in oxidative stress stimulated by H2O2, while Trolox, a cell-permeable analog of alphaT, did not. The preventive effect of alphaT was dependent on de novo protein synthesis. Furthermore, we found that alphaT exposure induced the activation of both the MAP kinase (MAPK) and PI3 kinase (PI3K) pathways and that the alphaT-dependent survival effect was blocked by the inhibitors, U0126 (an MAPK pathway inhibitor) or LY294002 (a PI3K pathway inhibitor). Interestingly, the up-regulation of Bcl-2 (survival promoting molecule) was induced by alphaT application. The up-regulation of Bcl-2 did not occur in the presence of U0126 or LY294002, suggesting that alphaT-up-regulated Bcl-2 is mediated by these kinase pathways. These observations suggest that vitamin E analogs play an essential role in neuronal maintenance and survival in the CNS.  相似文献   
79.
Free radicals induce oxidative stress in vivo, leading to various disorders and diseases. In the present study, the effect of oxygen pressure on the cytotoxicity induced by free radicals was studied. It was found that alkyl radicals markedly aggravated Jurkat cell apoptosis under low oxygen pressure and this was ascribed to a hypoxic condition caused by the consumption of oxygen by alkyl radicals giving peroxyl radicals and subsequent lipid peroxidation by a chain mechanism. The intracellular lipid hydroperoxides significantly increased at an early time point even under hypoxia. Cytochrome c was released from the mitochondria, and caspase-9 as well as caspase-3 was activated during apoptosis, indicating that cell death followed by the intrinsic, mitochondrial apoptosis pathway. Pretreatment with VAD-FMK, a caspase inhibitor, attenuated the apoptosis induced by alkyl radicals under hypoxia. Moreover, pretreatment with various antioxidants also significantly rescued the cells from apoptosis. Taken together, the results indicate that free radicals induced hypoxic conditions, which accelerated mitochondria-dependent cell apoptosis.  相似文献   
80.
We designed an automated workstation for magnetic particle-based single nucleotide polymorphism (SNP) discrimination of ALDH genotypes. Bacterial magnetic particles (BMPs) extracted from Magnetospirillum magneticum AMB-1 were used as DNA carriers. The principle for SNP discrimination in this study was based on fluorescence resonance energy transfer (FRET) between FITC (donor) and POPO-3 (acceptor) bound to double-stranded DNA. The workstation is equipped with a 96-way automated pipetter which collects and dispenses fluids as it moves in x- and z-directions. The platform contains a disposable tip rack station, a reagent vessel serving as a stock for POPO-3 and FITC-labeled probes and a reaction station for a 96-well microtiter plate. BMPs were collected by attaching a neodymium iron boron sintered (Nd-Fe-B) magnet on the bottom of the microtiter plate. This system permits the simultaneous heating and magnetic separation of 96 samples per assay. The genotypes ALDH2*1 and ALDH2*2 were discriminated by calculating the relative fluorescence intensities on BMPs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号