首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   774篇
  免费   57篇
  2024年   6篇
  2023年   6篇
  2022年   18篇
  2021年   37篇
  2020年   17篇
  2019年   21篇
  2018年   12篇
  2017年   14篇
  2016年   30篇
  2015年   30篇
  2014年   43篇
  2013年   25篇
  2012年   60篇
  2011年   61篇
  2010年   45篇
  2009年   29篇
  2008年   34篇
  2007年   45篇
  2006年   40篇
  2005年   33篇
  2004年   41篇
  2003年   33篇
  2002年   27篇
  2001年   8篇
  2000年   6篇
  1999年   3篇
  1998年   9篇
  1997年   7篇
  1996年   6篇
  1995年   4篇
  1994年   5篇
  1993年   8篇
  1989年   5篇
  1988年   3篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1983年   3篇
  1982年   3篇
  1981年   3篇
  1980年   3篇
  1978年   2篇
  1976年   2篇
  1973年   2篇
  1964年   2篇
  1963年   2篇
  1960年   2篇
  1958年   2篇
  1925年   2篇
  1911年   2篇
排序方式: 共有831条查询结果,搜索用时 15 毫秒
821.
Bioprocess and Biosystems Engineering - In the original publication, table captions were incorrectly published. The correct captions are given here.  相似文献   
822.
Numerous hypotheses have been proposed to explain the end Pleistocene extinction of large bodied mammals. The disease hypothesis attributes the extinction to the arrival of a novel ‘hyperdisease’ brought by immigrating aboriginal humans. However, until West Nile virus (WNV) invaded the United States, no known disease met the criteria of a hyperdisease. We evaluate the disease hypothesis using WNV in the United States as a model system. We show that WNV is size‐biased in its infection of North America birds, but is unlikely to result in an extinction similar to that of the end Pleistocene. WNV infects birds more uniformly across the body size spectrum than extinctions did across mammals and is not size‐biased within orders. Our study explores the potential impact of WNV on bird populations and provides no support for disease as a causal mechanism for the end Pleistocene megafaunal extinction.  相似文献   
823.
824.
Many human epithelial cancers are characterized by abnormal activation of the epidermal growth factor receptor (EGFR), which is often caused by its excessive expression in tumor cells. The abundance of EGFR is modulated, in part, by its ubiquitination, which targets it for degradation. The components responsible for adding ubiquitin to EGFR are well characterized, but this is a reversible process, and the mechanisms that modulate the removal of ubiquitin from the EGFR are not well known. We found that de-ubiquitination of EGFR was regulated by diacylglycerol kinase δ (DGKδ), a lipid kinase that terminates diacylglycerol signaling. In DGKδ-deficient cells, ubiquitination of EGFR was enhanced, which attenuated the steady-state levels of EGFR and promoted its ligand-induced degradation. These effects were not caused by changes in the ubiquitinating apparatus, but instead were due to reduced expression of the de-ubiquitinase, ubiquitin-specific protease 8 (USP8). Depletion of protein kinase Cα (PKCα), a target of diacylglycerol, rescued the levels of USP8 and normalized EGFR degradation in DGKδ-deficient cells. Moreover, the effects of PKCα were caused by its inhibition of Akt, which stabilizes USP8. Our data indicate a novel mechanism where DGKδ and PKCα modulate the levels of ubiquitinated EGFR through Akt and USP8.  相似文献   
825.
826.
827.
828.
Direct conversion of carbon dioxide into chemicals using engineered autotrophic microorganisms offers a potential solution for both sustainability and carbon mitigation. Butyrate is an important chemical used in various industries, including fragrance, food, and plastics. A model cyanobacterium Synechococcus elongatus PCC 7942 was engineered for the direct photosynthetic conversion of CO 2 to butyrate. An engineered Clostridium Coenzyme A (CoA)-dependent pathway leading to the synthesis of butyryl-CoA, the precursor to butyrate, was introduced into S. elongatus PCC 7942. Two CoA removal strategies were then individually coupled to the modified CoA-dependent pathway to yield butyrate production. Similar results were observed between the two CoA removal strategies. The best butyrate producing strain of S. elongatus resulted in an observed butyrate titer of 750 mg/L and a cumulative titer of 1.1 g/L. These results demonstrated the feasibility of photosynthetic butyrate production and expanded the chemical repertoire accessible for production by photoautotrophs.  相似文献   
829.
Muscles are composite structures. The protein filaments responsible for force production are bundled within fluid-filled cells, and these cells are wrapped in ordered sleeves of fibrous collagen. Recent models suggest that the mechanical interaction between the intracellular fluid and extracellular collagen is essential to force production in passive skeletal muscle, allowing the material stiffness of extracellular collagen to contribute to passive muscle force at physiologically relevant muscle lengths. Such models lead to the prediction, tested here, that expansion of the fluid compartment within muscles should drive forceful muscle shortening, resulting in the production of mechanical work unassociated with contractile activity. We tested this prediction by experimentally increasing the fluid volumes of isolated bullfrog semimembranosus muscles via osmotically hypotonic bathing solutions. Over time, passive muscles bathed in hypotonic solution widened by 16.44 ± 3.66% (mean ± s.d.) as they took on fluid. Concurrently, muscles shortened by 2.13 ± 0.75% along their line of action, displacing a force-regulated servomotor and doing measurable mechanical work. This behaviour contradicts the expectation for an isotropic biological tissue that would lengthen when internally pressurized, suggesting a functional mechanism analogous to that of engineered pneumatic actuators and highlighting the significance of three-dimensional force transmission in skeletal muscle.  相似文献   
830.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号