首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   714篇
  免费   50篇
  2024年   3篇
  2023年   4篇
  2022年   16篇
  2021年   37篇
  2020年   15篇
  2019年   18篇
  2018年   12篇
  2017年   13篇
  2016年   30篇
  2015年   30篇
  2014年   42篇
  2013年   25篇
  2012年   59篇
  2011年   59篇
  2010年   44篇
  2009年   28篇
  2008年   33篇
  2007年   43篇
  2006年   39篇
  2005年   33篇
  2004年   41篇
  2003年   31篇
  2002年   27篇
  2001年   6篇
  2000年   2篇
  1999年   3篇
  1998年   7篇
  1997年   7篇
  1996年   5篇
  1995年   4篇
  1994年   5篇
  1993年   7篇
  1991年   2篇
  1990年   2篇
  1989年   4篇
  1986年   2篇
  1984年   2篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1972年   1篇
  1958年   1篇
  1950年   1篇
  1926年   1篇
  1925年   2篇
  1919年   1篇
  1918年   1篇
  1911年   2篇
  1906年   1篇
  1898年   1篇
排序方式: 共有764条查询结果,搜索用时 15 毫秒
91.
Genomic instability and aging-like phenotype in the absence of mammalian SIRT6   总被引:31,自引:0,他引:31  
The Sir2 histone deacetylase functions as a chromatin silencer to regulate recombination, genomic stability, and aging in budding yeast. Seven mammalian Sir2 homologs have been identified (SIRT1-SIRT7), and it has been speculated that some may have similar functions to Sir2. Here, we demonstrate that SIRT6 is a nuclear, chromatin-associated protein that promotes resistance to DNA damage and suppresses genomic instability in mouse cells, in association with a role in base excision repair (BER). SIRT6-deficient mice are small and at 2-3 weeks of age develop abnormalities that include profound lymphopenia, loss of subcutaneous fat, lordokyphosis, and severe metabolic defects, eventually dying at about 4 weeks. We conclude that one function of SIRT6 is to promote normal DNA repair, and that SIRT6 loss leads to abnormalities in mice that overlap with aging-associated degenerative processes.  相似文献   
92.
This study reports the solid-state NMR spectroscopic characterization of the amino-proximate transmembrane domain (TM-A) of a diverged microsomal delta12-desaturase (CREP-1) in a phospholipid bilayer. A series of TM-A peptides were synthesized with 2H-labeled side chains (Ala-53, -56, and -63, Leu-62, Val-50), and their dynamic properties were studied in 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) bilayers at various temperatures. At 6 mol % peptide to lipid, 31P NMR spectra indicated that the peptides did not significantly disrupt the phospholipid bilayer in the L(alpha) phase. The 2H NMR spectra from Ala-53 and Ala-56 samples revealed broad Pake patterns with quadrupolar splittings of 16.9 kHz and 13.3 kHz, respectively, indicating restricted motion confined within the hydrocarbon core of the phospholipid bilayer. Conversely, the deuterated Ala-63 sample revealed a peak centered at 0 kHz with a linewidth of 1.9 kHz, indicating increased side-chain motion and solvent exposure relative to the spectra of the other Ala residues. Val-50 and Leu-62 showed Pake patterns, with quadrupolar splittings of 3.5 kHz and 3.7 kHz, respectively, intermediate to Ala-53/Ala-56 and Ala-63. This indicates partial motional averaging and supports a model with the Val and Leu residues embedded inside the lipid bilayer. Solid-state NMR spectroscopy performed on the 2H-labeled Ala-56 TM-A peptide incorporated into magnetically aligned phospholipid bilayers indicated that the peptide is tilted 8 degrees with respect to the membrane normal of the lipid bilayer. Snorkeling and anchoring interactions of Arg-44 and Tyr-60, respectively, with the polar region or polar hydrophobic interface of the lipid bilayer are suggested as control elements for insertional depth and orientation of the helix in the lipid matrix. Thus, this study defines the location of key residues in TM-A with respect to the lipid bilayer, describes the conformation of TM-A in a biomembrane mimic, presents a peptide-bilayer model useful in the consideration of local protein folding in the microsomal desaturases, and presents a model of arginine and tyrosine control of transmembrane protein stability and insertion.  相似文献   
93.
Mitochondrial DNA (mtDNA) mutations were reported in different cancers. However, the nature and role of mtDNA mutation in never‐smoker lung cancer patients including patients with epidermal growth factor receptor (EGFR) and KRAS gene mutation are unknown. In the present study, we sequenced entire mitochondrial genome (16.5 kb) in matched normal and tumors obtained from 30 never‐smoker and 30 current‐smoker lung cancer patients, and determined the mtDNA content. All the patients' samples were sequenced for KRAS (exon 2) and EGFR (exon 19 and 21) gene mutation. The impact of forced overexpression of a respiratory complex‐I gene mutation was evaluated in a lung cancer cell line. We observed significantly higher (P = 0.006) mtDNA mutation in the never‐smokers compared to the current‐smoker lung cancer patients. MtDNA mutation was significantly higher (P = 0.026) in the never‐smoker Asian compared to the current‐smoker Caucasian patients' population. MtDNA mutation was significantly (P = 0.007) associated with EGFR gene mutation in the never‐smoker patients. We also observed a significant increase (P = 0.037) in mtDNA content among the never‐smoker lung cancer patients. The majority of the coding mtDNA mutations targeted respiratory complex‐I and forced overexpression of one of these mutations resulted in increased in vitro proliferation, invasion, and superoxide production in lung cancer cells. We observed a higher prevalence and new relationship between mtDNA alterations among never‐smoker lung cancer patients and EGFR gene mutation. Moreover, a representative mutation produced strong growth effects after forced overexpression in lung cancer cells. Signature mtDNA mutations provide a basis to develop novel biomarkers and therapeutic strategies for never‐smoker lung cancer patients. J. Cell. Physiol. 227: 2451–2460, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   
94.
Major infestations of the flat mite species Raoiella indica Hirst affecting bananas, palms and other ornamental plants have been reported from the Caribbean islands, Mexico, FL (USA), Venezuela, Colombia and Brazil. Specimens from these localities were examined using traditional light microscopy and low-temperature scanning electron microscopy techniques. While little is known about the biology of this mite, its recent appearance in the Americas in both commercial coconut and banana plantations has raised concerns about its economic impact as an invasive pest.  相似文献   
95.
? Premise of the study: A past study based on morphological data alone showed that the means by which plants of the Australian genus Hakea reduce florivory is related to the evolution of bird pollination. For example, bird pollination was shown to have arisen only in insect-pollinated lineages that already produced greater amounts of floral cyanide, a feature that reduces florivory. We examine a central conclusion of that study, and a common assumption in the literature, that bird pollination arose in insect-pollinated lineages, rather than the reverse. ? Methods: We combined morphological and DNA data to infer the phylogeny and age of the Australian genus Hakea, using 9.2 kilobases of plastid and nuclear DNA and 46 morphological characters from a taxonomically even sampling of 55 of the 149 species. ? Key results: Hakea is rooted confidently in a position that has not been suggested before. The phylogeny implies that bird pollination is primitive in Hakea and that multiple shifts to insect pollination have occurred. The unexpectedly young age of Hakea (a crown age of ca. 10 Ma) makes it coincident with its primary bird pollinators (honeyeaters) throughout its history. ? Conclusions: Our study demonstrates that Hakea is an exception to the more commonly described shift from insect to bird pollination. However, we note that only one previous phylogenetic study involved Australian plants and their honeyeater pollinators and that our finding might prove to be more common on that continent.  相似文献   
96.
The nature of ribonuclease A (RNase) modifications induced by p-benzoquinone (pBQ) was investigated using several analysis methods. SDS-PAGE experiments revealed that pBQ was efficient in producing oligomers and polymeric aggregates when RNase was incubated with pBQ. The fluorescence behavior and anisotropy changes of the modified RNase were monitored for a series of incubation reactions where RNase (0.050 mM) was incubated with pBQ (0.050, 0.25, 0.50, 1.50 mM) at 37 °C in phosphate buffer (pH 7.0, 50 mM). The modified RNase exhibited less intense fluorescence and slightly higher anisotropy than the unmodified RNase. UV-Vis spectroscopy indicated that pBQ formed covalent bonds to the modified RNase. Confocal imaging analysis confirmed the formation of the polymeric RNase aggregates with different sizes upon exposure of RNase to high concentrations of pBQ. The interaction between the modified RNase and salts affecting biomineralization of salts was also investigated by scanning electron microscopy. Overall, our results show that pBQ can induce formation of both RNase adducts and aggregates thus providing a better understanding of its biological activity.  相似文献   
97.
Zell E  Balcetis E 《PloS one》2012,7(5):e36742
Can the effects of social comparison extend beyond explicit evaluation to visual self-representation--a perceptual stimulus that is objectively verifiable, unambiguous, and frequently updated? We morphed images of participants' faces with attractive and unattractive references. With access to a mirror, participants selected the morphed image they perceived as depicting their face. Participants who engaged in upward comparison with relevant attractive targets selected a less attractive morph compared to participants exposed to control images (Study 1). After downward comparison with relevant unattractive targets compared to control images, participants selected a more attractive morph (Study 2). Biased representations were not the products of cognitive accessibility of beauty constructs; comparisons did not influence representations of strangers' faces (Study 3). We discuss implications for vision, social comparison, and body image.  相似文献   
98.
Larval zebrafish innately perform a suite of behaviors that are tightly linked to their evolutionary past, notably escape from threatening stimuli and pursuit and capture of prey. These behaviors have been carefully examined in the past, but mostly with regard to the movements of the trunk and tail of the larvae. Here, we employ kinematics analyses to describe the movements of the pectoral fins during escape and predatory behavior. In accord with previous studies, we find roles for the pectoral fins in slow swimming and immediately after striking prey. We find novel roles for the pectoral fins in long-latency, but not in short-latency C-bends. We also observe fin movements that occur during orienting J-turns and S-starts that drive high-velocity predatory strikes. Finally, we find that the use of pectoral fins following a predatory strike is scaled to the velocity of the strike, supporting a role for the fins in braking. The implications of these results for central control of coordinated movements are discussed, and we hope that these results will provide baselines for future analyses of cross-body coordination using mutants, morphants, and transgenic approaches.  相似文献   
99.
100.
By restoring mitochondrial function, methylene blue (MB) is an effective neuroprotectant in many neurological disorders (e.g., Parkinson’s and Alzheimer’s diseases). MB has also been proposed as a brain metabolic enhancer because of its action on mitochondrial cytochrome c oxidase. We used in vitro and in vivo approaches to determine how MB affects brain metabolism and hemodynamics. For in vitro, we evaluated the effect of MB on brain mitochondrial function, oxygen consumption, and glucose uptake. For in vivo, we applied neuroimaging and intravenous measurements to determine MB’s effect on glucose uptake, cerebral blood flow (CBF), and cerebral metabolic rate of oxygen (CMRO2) under normoxic and hypoxic conditions in rats. MB significantly increases mitochondrial complex I–III activity in isolated mitochondria and enhances oxygen consumption and glucose uptake in HT-22 cells. Using positron emission tomography and magnetic resonance imaging (MRI), we observed significant increases in brain glucose uptake, CBF, and CMRO2 under both normoxic and hypoxic conditions. Further, MRI revealed that MB dramatically increased CBF in the hippocampus and in the cingulate, motor, and frontoparietal cortices, areas of the brain affected by Alzheimer’s and Parkinson’s diseases. Our results suggest that MB can enhance brain metabolism and hemodynamics, and multimetric neuroimaging systems offer a noninvasive, nondestructive way to evaluate treatment efficacy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号