首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   911篇
  免费   93篇
  2024年   5篇
  2023年   7篇
  2022年   19篇
  2021年   41篇
  2020年   17篇
  2019年   24篇
  2018年   15篇
  2017年   17篇
  2016年   42篇
  2015年   36篇
  2014年   49篇
  2013年   33篇
  2012年   77篇
  2011年   71篇
  2010年   55篇
  2009年   33篇
  2008年   45篇
  2007年   49篇
  2006年   44篇
  2005年   42篇
  2004年   46篇
  2003年   35篇
  2002年   32篇
  2001年   10篇
  2000年   4篇
  1999年   7篇
  1998年   8篇
  1997年   9篇
  1996年   7篇
  1995年   6篇
  1994年   7篇
  1993年   9篇
  1992年   4篇
  1991年   4篇
  1990年   5篇
  1989年   7篇
  1988年   9篇
  1987年   12篇
  1986年   6篇
  1985年   4篇
  1984年   6篇
  1983年   5篇
  1982年   3篇
  1980年   4篇
  1976年   5篇
  1974年   3篇
  1972年   3篇
  1967年   3篇
  1925年   2篇
  1911年   2篇
排序方式: 共有1004条查询结果,搜索用时 31 毫秒
71.
Midfacial reduction in primates has been explained as a byproduct of other growth patterns, especially the convergent orbits. This is at once an evolutionary and developmental explanation for relatively short snouts in most modern primates. Here, we use histological sections of perinatal nonhuman primates (tamarin, tarsier, loris) to investigate how orbital morphology emerges during ontogeny in selected primates compared to another euarchontan (Tupaia glis). We annotated serial histological sections for location of osteoclasts or osteoblasts, and used these to create three‐dimensional “modeling maps” showing perinatal growth patterns of the facial skeleton. In addition, in one specimen we transferred annotations from histological sections to CT slices, to create a rotatable 3D volume that shows orbital modeling. Our findings suggest that growth in the competing orbital and neurocranial functional matrices differs among species, influencing modeling patterns. Distinctions among species are observed in the frontal bone, at a shared interface between the endocranial fossa and the orbit. The medial orbital wall is extensively resorptive in primates, whereas the medial orbit is generally depositional in Tupaia. As hypothesized, the orbital soft tissues encroach on available interorbital space. However, eye size cannot, by itself, explain the extent of reduction of the olfactory recess. In Loris, the posterior portion of medial orbit differed from the other primates. It showed evidence of outward drift where the olfactory bulb increased in cross‐sectional area. We suggest the olfactory bulbs are significant to orbit position in strepsirrhines, influencing an expanded interorbital breadth at early stages of development. Am J Phys Anthropol 154:424–435, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   
72.
Dr. John Popenoe was Director of Fairchild Tropical Botanic Garden (FTBG) between 1963 and 1989. Dr. Popenoe was a strong supporter of the Bahamian flora, and in 1963 he obtained extramural funds to develop a living collection focusing on Bahamian plants that was established in FTBG. During his tenure FTBG supported the publication of the latest comprehensive flora of this archipelago. A project initiated by the first FTBG herbarium curator, William Gillis, but published by Donovan and Helen Correll (with illustrations of Priscilla Fawcett) in 1982. This living collection of Bahamian plants has supplied plant material for molecular phylogenetic studies worldwide. There are DNA phylogenies for only 10 of the 89 Bahamian endemics; most of the material of these phylogenies came from plants from these collections (three species) and/or from fragments of herbarium specimens collected by Donovan Correll (six species). Only two of the species included in these phylogenies are from collections unrelated to FTBG. Excluding species restricted to the Bahamas, material from 14 Caribbean Island endemics that are part of these collections has been used in phylogenetic studies. The available molecular phylogenies show that the Bahamian endemics are closely related to species from the West Indies or continental areas of the Caribbean Basin. There is also a paucity of population genetic studies based on DNA markers focusing on Bahamian plants. Only two of the four available population genetic studies are for a Bahamian endemic taxon.  相似文献   
73.
1-(Benzothiazol-2-yl)-1-(4-chlorophenyl)ethanol (1) was identified as a positive allosteric modulator (PAM) of the CaSR in a functional cell-based assay. This compound belongs to a class of compounds that is structurally distinct from other known positive allosteric modulators, for example, the phenylalkylamines cinacalcet, a modified analog (13) potently suppressed parathyroid hormone (PTH) release in rats, consistent with its profile as a PAM of CaSRs.  相似文献   
74.
Microorganisms can use complex photosystems or light-dependent proton pumps to generate membrane potential and/or reduce electron carriers to support growth. The discovery that proteorhodopsin is a light-dependent proton pump that can be expressed readily in recombinant bacteria enables development of new strategies to probe microbial physiology and to engineer microbes with new light-driven properties. Here, we describe functional expression of proteorhodopsin and light-induced changes in membrane potential in the bacterium Shewanella oneidensis strain MR-1. We report that there were significant increases in electrical current generation during illumination of electrochemical chambers containing S. oneidensis expressing proteorhodopsin. We present evidence that an engineered strain is able to consume lactate at an increased rate when it is illuminated, which is consistent with the hypothesis that proteorhodopsin activity enhances lactate uptake by increasing the proton motive force. Our results demonstrate that there is coupling of a light-driven process to electricity generation in a nonphotosynthetic engineered bacterium. Expression of proteorhodopsin also preserved the viability of the bacterium under nutrient-limited conditions, providing evidence that fulfillment of basic energy needs of organisms may explain the widespread distribution of proteorhodopsin in marine environments.Classic experiments in microbial bioenergetics used light-driven reactions from halobacterial bacteriorhodopsin or the photosynthetic reaction center to provide a temporary driving force for understanding transport and chemiosmotic coupling (6, 7, 19, 35). However, light-driven reactions have not been used in metabolic engineering to alter microbial physiology and production of chemicals. The recent discovery of proteorhodopsin (PR) in ocean microorganisms and the ease with which this membrane protein can be functionally expressed by recombinant bacteria have made possible many engineering strategies previously not available (1, 16). In this paper, we describe progress toward the goal of integrating light-driven reactions with biocatalysis.In contrast to the situation for established industrial microorganisms, such as Escherichia coli, our current understanding of less-studied algal and phototrophic bacteria may limit metabolic engineering strategies which require genetic manipulation. Metabolic engineering strategies using photosynthetic bacteria have focused largely on methods to increase hydrogen production, and improvements rely mainly on engineering of nitrogenase and hydrogenase to produce H2. Algae appear to be suited to large-scale cultivation for lipid production, but so far little has been done to engineer these organisms (36). In principle, platform microbial hosts capable of producing a diverse range of products could be boosted by addition of light-driven processes from phototrophic metabolism.To demonstrate the feasibility of transferring a light-driven process into a nonphotosynthetic bacterium, we chose to study proteorhodopsin (PR) first because it is one of the simplest mechanisms for harnessing the energy from light. The proteorhodopsins are a group of transmembrane proteins that use the light-induced isomerization of retinal, the oxidative cleavage product of the carotenoid β-carotene, either to initiate signaling pathways or to catalyze the transfer of ions across cell membranes (8). PR was discovered by metagenomic analysis of marine samples (1) and is related to the well-studied bacteriorhodopsin of archaea (33) and rhodopsin (34), a eukaryotic light-sensing protein. The membrane potential generated by light-driven proton pumping by PR has been confirmed to drive ATP synthesis in a heterologous system (25). However, bacteria expressing heterologous PR were shown not to benefit from this pumping activity, as no significant increases in growth rates were observed (9). This led to the suggestion that PR may benefit the organism only under starvation conditions. In agreement with this hypothesis, Gomez-Consarnau et al. (10) have reported that the light-dependent growth rates of a marine flavobacterium that has a native PR are increased only when the organism is cultured under energy-limited conditions.Studies of both native and recombinant systems in which rhodopsins are expressed have generated light-dependent membrane potentials. In membrane vesicles isolated from a native host, the light-dependent membrane potential generated by bacteriorhodopsin provides the driving force for ATP synthesis (35) and uptake of leucine and glutamate (20, 22). More recently, studies of recombinant systems have coupled the membrane potential to other transport processes. In one example, the membrane potential-dependent export of specific toxic molecules increased when E. coli cells expressing both an archaeal rhodopsin and a specific efflux pump were exposed to light (17). In another experiment, starved E. coli cells expressing PR increased the swimming motion of their flagella when they were illuminated (44). Based upon measurements of flagellar motion as a function of light intensity and azide concentration, the proton motive force generated by PR was estimated to be −0.2 V, a value similar to the value for aerobic respiration in E. coli (42).As a nonphotosynthetic host for recombinant PR expression, we chose the dissimilatory metal-reducing bacterium Shewanella oneidensis strain MR-1, which is genetically tractable for engineering and is able to use a variety of terminal electron acceptors, including insoluble metal oxides (11, 30). Key to the ability of this bacterium to reduce metal oxides is a multicomponent extracellular respiratory pathway that transports electrons from menaquinol to cytochromes in the outer membrane. This pathway is composed of a cytoplasmic membrane tetraheme protein (CymA), a periplasmic decaheme protein (MtrA), an integral outer membrane protein (MtrB), and a decaheme lipoprotein (MtrC) that is associated with MtrB (14, 37, 40). The ability of S. oneidensis to reduce extracellular metal oxides has made it possible to harvest electrons from this organism by coupling it to an electrode which serves as the electron acceptor (21). The electron flow to the outer surface allows respiration rates to be measured directly by electrochemistry.In the current work, we introduced PR into an electricity-generating bacterium, S. oneidensis strain MR-1, and demonstrated that there was integration of a light-driven process into the metabolism of a previously nonphotosynthetic organism that resulted in a useful output. We show here that PR allows cells to survive for extended periods in stationary phase and that the presence of light results in an increase in electricity generation. A possible physiological model to explain these effects is discussed.  相似文献   
75.
Most nonsyndromic hearing losses are caused by mutations in the GJB2 gene, and studies have revealed that the forms and frequencies of these mutations are largely dependent on ethnic origin. In the present study, we aimed to characterize the mutation profiles of 151 patients with hearing loss in Turkey. The entire coding region of the GJB2 was directly sequenced in all patients. We found 35 (23.2%) individuals carrying GJB2 mutations. Seven different mutations were identified, five of which were previously known (35delG, delE120, R184P, M163V, L90P), the remaining two being novel variants (M34V, L205V). The most common mutation was 35delG followed by delE120. The 35delG mutation was homozygous in 22 cases (14.5%) and heterozygous in 4 cases (2.6%). Compound heterozygosity for 35delG was also observed. The delE120 mutation was found in three patients in homozygous form. A homozygous L90P and heterozygous mutations M163V and M34V were found in single cases.  相似文献   
76.
The visual pathway is tasked with processing incoming signals from the retina and converting this information into adaptive behavior. Recent studies of the larval zebrafish tectum have begun to clarify how the 'micro-circuitry' of this highly organized midbrain structure filters visual input, which arrives in the superficial layers and directs motor output through efferent projections from its deep layers. The new emphasis has been on the specific function of neuronal cell types, which can now be reproducibly labeled, imaged and manipulated using genetic and optical techniques. Here, we discuss recent advances and emerging experimental approaches for studying tectal circuits as models for visual processing and sensorimotor transformation by the vertebrate brain.  相似文献   
77.

Background

To investigate disease progression the first 12 months after diagnosis in children with type 1 diabetes negative (AAB negative) for pancreatic autoantibodies [islet cell autoantibodies(ICA), glutamic acid decarboxylase antibodies (GADA) and insulinoma-associated antigen-2 antibodies (IA-2A)]. Furthermore the study aimed at determining whether mutations in KCNJ11, ABCC8, HNF1A, HNF4A or INS are common in AAB negative diabetes.

Materials and methods

In 261 newly diagnosed children with type 1 diabetes, we measured residual β-cell function, ICA, GADA, and IA-2A at 1, 6 and 12 months after diagnosis. The genes KCNJ11, ABCC8, HNF1A, HNF4A and INS were sequenced in subjects AAB negative at diagnosis. We expressed recombinant K-ATP channels in Xenopus oocytes to analyse the functional effects of an ABCC8 mutation.

Results

Twenty-four patients (9.1%) tested AAB negative after one month. Patients, who were AAB-negative throughout the 12-month period, had higher residual β-cell function (P = 0.002), lower blood glucose (P = 0.004), received less insulin (P = 0.05) and had lower HbA1c (P = 0.02) 12 months after diagnosis. One patient had a heterozygous mutation leading to the substitution of arginine at residue 1530 of SUR1 (ABCC8) by cysteine. Functional analyses of recombinant K-ATP channels showed that R1530C markedly reduced the sensitivity of the K-ATP channel to inhibition by MgATP. Morover, the channel was highly sensitive to sulphonylureas. However, there was no effect of sulfonylurea treatment after four weeks on 1.0-1.2 mg/kg/24 h glibenclamide.

Conclusion

GAD, IA-2A, and ICA negative children with new onset type 1 diabetes have slower disease progression as assessed by residual beta-cell function and improved glycemic control 12 months after diagnosis. One out of 24 had a mutation in ABCC8, suggesting that screening of ABCC8 should be considered in patients with AAB negative type 1 diabetes.  相似文献   
78.
Highlights? Wnt2 is required for atrial and inflow tract morphogenesis ? Wnt2 regulates expansion of secondary heart field progenitors ? Defects in Wnt2?/? mutants can be rescued using Wnt signaling agonists ? Wnt2 cooperates with Gata6 to regulate cardiac inflow tract development  相似文献   
79.
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号