首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3181篇
  免费   270篇
  国内免费   2篇
  3453篇
  2023年   12篇
  2022年   44篇
  2021年   64篇
  2020年   33篇
  2019年   49篇
  2018年   78篇
  2017年   54篇
  2016年   119篇
  2015年   177篇
  2014年   184篇
  2013年   208篇
  2012年   291篇
  2011年   266篇
  2010年   167篇
  2009年   156篇
  2008年   190篇
  2007年   212篇
  2006年   168篇
  2005年   166篇
  2004年   132篇
  2003年   125篇
  2002年   132篇
  2001年   26篇
  2000年   13篇
  1999年   27篇
  1998年   28篇
  1997年   28篇
  1996年   16篇
  1995年   12篇
  1994年   17篇
  1993年   16篇
  1992年   18篇
  1991年   15篇
  1990年   15篇
  1989年   8篇
  1988年   7篇
  1987年   10篇
  1986年   5篇
  1985年   15篇
  1984年   11篇
  1983年   7篇
  1982年   12篇
  1981年   6篇
  1980年   10篇
  1974年   6篇
  1969年   4篇
  1960年   4篇
  1957年   5篇
  1953年   4篇
  1946年   4篇
排序方式: 共有3453条查询结果,搜索用时 15 毫秒
151.
The retina-specific ATP binding cassette transporter, ABCA4 protein, is associated with a broad range of inherited macular degenerations, including Stargardt disease, autosomal recessive cone rod dystrophy, and fundus flavimaculatus. In order to understand its role in retinal transport in rod out segment discs, we have investigated the interactions of the soluble domains of ABCA4 with both 11-cis- and all-trans-retinal. Using fluorescence anisotropy-based binding analysis and recombinant polypeptides derived from the amino acid sequences of the four soluble domains of ABCA4, we demonstrated that the nucleotide binding domain 1 (NBD1) specifically bound 11-cis-retinal. Its affinity for all-trans-retinal was markedly reduced. Stargardt disease-associated mutations in this domain resulted in attenuation of 11-cis-retinal binding. Significant differences in 11-cis-retinal binding affinities were observed between NBD1 and other cytoplasmic and lumenal domains of ABCA4. The results suggest a possible role of ABCA4 and, in particular, the NBD1 domain in 11-cis-retinal binding. These results also correlate well with a recent report on the in vivo role of ABCA4 in 11-cis-retinal transport.  相似文献   
152.
The antioxidant composition and relative water stress tolerance of nodulated alfalfa plants ( Medicago sativa L. ×  Sinorhizobium meliloti 102F78) of the elite genotype N4 and three derived transgenic lines have been studied in detail. These transgenic lines overproduced, respectively, Mn-containing superoxide dismutase (SOD) in the mitochondria of leaves and nodules, MnSOD in the chloroplasts, and FeSOD in the chloroplasts. In general for all lines, water stress caused moderate decreases in MnSOD and FeSOD activities in both leaves and nodules, but had distinct tissue-dependent effects on the activities of the peroxide-scavenging enzymes. During water stress, with a few exceptions, ascorbate peroxidase and catalase activities increased moderately in leaves but decreased in nodules. At mild water stress, transgenic lines showed, on average, 20% higher photosynthetic activity than the parental line, which suggests a superior tolerance of transgenic plants under these conditions. However, the untransformed and the transgenic plants performed similarly during moderate and severe water stress and recovery with respect to important markers of metabolic activity and of oxidative stress in leaves and nodules. We conclude that the base genotype used for transformation and the background SOD isozymic composition may have a profound effect on the relative tolerance of the transgenic lines to abiotic stress.  相似文献   
153.
154.
Use of cationic polymers as nonviral gene vectors has several limitations such as low transfection efficiency, high toxicity, and inactivation by serum. In this study, varying amounts of low molecular weight branched polyethylenimine 1.8 kDa (bPEI 1.8) were introduced on to a neutral polymer, poly(vinyl alcohol) (PVA), to bring in cationic charge on the resulting PVA-PEI (PP) nanocomposites. We rationalized that by introducing bPEI 1.8, buffering and condensation properties of the proposed nanocomposites would result in improved gene transfer capability. A series of PVA-PEI (PP) nanocomposites was synthesized using well-established epoxide chemistry and characterized by IR and NMR. Particle size of the PP/DNA complexes ranged between 120 to 135 nm, as determined by dynamic light scattering (DLS), and DNA retardation assay revealed efficient binding capability of PP nanocomposites to negatively charged nucleic acids. In vitro transfection of PP/DNA complexes in HEK293, HeLa, and CHO cells revealed that the best working formulation in the synthesized series, PP-3/DNA complex, displayed ~2-50-fold higher transfection efficiency than bPEIs (1.8 and 25 kDa) and commercial transfection reagents. More importantly, the PP/DNA complexes were stable over a period of time, along with their superior transfection efficiency in the presence of serum compared to serum-free conditions, retaining the nontoxic property of low molecular weight bPEI. The in vivo administration of PP-3/DNA complex in Balb/c mice showed maximum gene expression in their spleen. The study demonstrates the potential of PP nanocomposites as promising nonviral gene vectors for in vivo applications.  相似文献   
155.
156.
157.
The acute effect of palmitate on glucose metabolism in rat skeletal muscle was examined. Soleus muscles from Wistar male rats were incubated in Krebs-Ringer bicarbonate buffer, for 1 h, in the absence or presence of 10 mU/ml insulin and 0, 50 or 100 microM palmitate. Palmitate increased the insulin-stimulated [(14)C]glycogen synthesis, decreased lactate production, and did not alter D-[U-(14)C]glucose decarboxylation and 2-deoxy-D-[2,6-(3)H]glucose uptake. This fatty acid decreased the conversion of pyruvate to lactate and [1-(14)C]pyruvate decarboxylation and increased (14)CO(2) produced from [2-(14)C]pyruvate. Palmitate reduced insulin-stimulated phosphorylation of insulin receptor substrate-1/2, Akt, and p44/42 mitogen-activated protein kinases. Bromopalmitate, a non-metabolizable analogue of palmitate, reduced [(14)C]glycogen synthesis. A strong correlation was found between [U-(14)C]palmitate decarboxylation and [(14)C]glycogen synthesis (r=0.99). Also, palmitate increased intracellular content of glucose 6-phosphate in the presence of insulin. These results led us to postulate that palmitate acutely potentiates insulin-stimulated glycogen synthesis by a mechanism that requires its metabolization (Randle cycle). The inhibitory effect of palmitate on insulin-stimulated protein phosphorylation might play an important role for the development of insulin resistance in conditions of chronic exposure to high levels of fatty acids.  相似文献   
158.
It is commonly accepted that brain phospholipids are highly enriched with long-chain polyunsaturated fatty acids (PUFAs). However, the evidence for this remains unclear. We used HPLC–MS to analyze the content and composition of phospholipids in rat brain and compared it to the heart, kidney, and liver. Phospholipids typically contain one PUFA, such as 18:2, 20:4, or 22:6, and one saturated fatty acid, such as 16:0 or 18:0. However, we found that brain phospholipids containing monounsaturated fatty acids in the place of PUFAs are highly elevated compared to phospholipids in the heart, kidney, and liver. The relative content of phospholipid containing PUFAs is ~ 60% in the brain, whereas it is over 90% in other tissues. The most abundant species of phosphatidylcholine (PC) is PC(16:0/18:1) in the brain, whereas PC(18:0/20:4) and PC(16:0/20:4) are predominated in other tissues. Moreover, several major species of plasmanyl and plasmenyl phosphatidylethanolamine are found to contain monounsaturated fatty acid in the brain only. Overall, our data clearly show that brain phospholipids are the least enriched with PUFAs of the four major organs, challenging the common belief that the brain is highly enriched with PUFAs.  相似文献   
159.
Abstract: The relationship between elevations in intracellular free Ca2+ concentration ([Ca2+]i) by different mechanisms and tyrosine hydroxylase (TH) gene expression was examined. Depolarization by an elevated K+ concentration triggered rapid and sustained increases in [Ca2+]i from a basal level of ~50 to 110–150 nM and three- to fourfold elevations in TH mRNA levels, requiring extracellular calcium but not inositol 1,4,5-trisphosphate (IP3). On the other hand, bradykinin or thapsigargin, both of which induce release of intracellular calcium stores via IP3 or inhibition of Ca2+-ATPase, rapidly elevated [Ca2+]i to >200 nM and increased TH gene expression (three-to fivefold). Confocal imaging showed that the elevations in [Ca2+]i in each case occurred throughout the cyto- and nucleoplasm. The initial rise in [Ca2+]i due to either bradykinin or thapsigargin, which did not require extracellular calcium, was sufficient to initiate the events leading to increased TH expression. Consistent with this, the effects of bradykinin on TH expression were inhibited by 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid or 3,4,5-trimethoxybenzoic acid 8-(diethylamino)-octyl ester which chelates or inhibits the release of intracellular calcium, respectively. Bradykinin required a rise in [Ca2+]i for <10 min, as opposed to 10–30 min for depolarization to increase TH mRNA levels. These results demonstrate that although each of these treatments increased TH gene expression by raising [Ca2+]i, there are important differences among them in terms of the magnitude of elevated [Ca2+]i, requirements for extracellular calcium or release of intracellular calcium stores, and duration of elevated [Ca2+]i, indicating the involvement of different calcium signaling pathways leading to regulation of TH gene expression.  相似文献   
160.
  1. Download : Download high-res image (63KB)
  2. Download : Download full-size image
Highlights
  • •MS-based clinical assay that accurately determines phospho Rab10 occupancy.
  • •Stable isotope labeled phosphopeptide injected as a standard with endogenous tryptic phospho Rab peptide for accurate ratio determination.
  • •Determination of pRab levels in neutrophils of Parkinson disease patients.
  • •Relevance of pRab levels as marker of PD.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号