首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3155篇
  免费   263篇
  国内免费   2篇
  3420篇
  2023年   12篇
  2022年   44篇
  2021年   64篇
  2020年   33篇
  2019年   49篇
  2018年   78篇
  2017年   54篇
  2016年   120篇
  2015年   174篇
  2014年   182篇
  2013年   206篇
  2012年   289篇
  2011年   266篇
  2010年   168篇
  2009年   156篇
  2008年   188篇
  2007年   209篇
  2006年   168篇
  2005年   164篇
  2004年   130篇
  2003年   122篇
  2002年   131篇
  2001年   26篇
  2000年   11篇
  1999年   27篇
  1998年   28篇
  1997年   28篇
  1996年   15篇
  1995年   12篇
  1994年   17篇
  1993年   16篇
  1992年   18篇
  1991年   15篇
  1990年   10篇
  1989年   5篇
  1988年   5篇
  1987年   5篇
  1985年   15篇
  1984年   12篇
  1983年   6篇
  1982年   13篇
  1981年   8篇
  1980年   12篇
  1975年   6篇
  1974年   6篇
  1969年   4篇
  1960年   4篇
  1957年   5篇
  1953年   4篇
  1946年   4篇
排序方式: 共有3420条查询结果,搜索用时 0 毫秒
41.
42.
At least five genes of the gibberellin (GA) biosynthesis pathway are clustered on chromosome 4 of Gibberella fujikuroi; these genes encode the bifunctional ent-copalyl diphosphate synthase/ent-kaurene synthase, a GA-specific geranylgeranyl diphosphate synthase, and three cytochrome P450 monooxygenases. We now describe a fourth cytochrome P450 monooxygenase gene (P450-4). Gas chromatography-mass spectrometry analysis of extracts of mycelia and culture fluid of a P450-4 knockout mutant identified ent-kaurene as the only intermediate of the GA pathway. Incubations with radiolabeled precursors showed that the metabolism of ent-kaurene, ent-kaurenol, and ent-kaurenal was blocked in the transformants, whereas ent-kaurenoic acid was metabolized efficiently to GA4. The GA-deficient mutant strain SG139, which lacks the 30-kb GA biosynthesis gene cluster, converted ent-kaurene to ent-kaurenoic acid after transformation with P450-4. The B1-41a mutant, described as blocked between ent-kaurenal and ent-kaurenoic acid, was fully complemented by P450-4. There is a single nucleotide difference between the sequence of the B1-41a and wild-type P450-4 alleles at the 3′ consensus sequence of intron 2 in the mutant, resulting in reduced levels of active protein due to a splicing defect in the mutant. These data suggest that P450-4 encodes a multifunctional ent-kaurene oxidase catalyzing all three oxidation steps between ent-kaurene and ent-kaurenoic acid.  相似文献   
43.
Salivation to food cues is typically explained in terms of mere stimulus-response links. However, food cues seem to especially increase salivation when food is attractive, suggesting a more complex psychological process. Adopting a grounded cognition perspective, we suggest that perceiving a food triggers simulations of consuming it, especially when attractive. These simulations then induce salivation, which effectively prepares the body for eating the food. In two experiments, we systematically examined the role of simulations on salivation to food cues. As stimuli, both experiments used an attractive, a neutral, and a sour food, as well as a non-food control object. In Experiment 1, participants were instructed to simulate eating every object they would be exposed to. We then exposed them to each object separately. Salivation was assessed by having participants spit their saliva into a cup after one minute of exposure. In Experiment 2, we instructed half of participants to simulate eating each object, and half to merely look at them, while measuring salivation as in Experiment 1. Afterwards, participants rated their simulations and desire to eat for each object separately. As predicted, foods increased salivation compared to the non-food control object, especially when they were attractive or sour (Exp. 1 and 2). Importantly, attractive and sour foods especially increased salivation when instructed to simulate (Exp. 2). These findings suggest that consumption simulations play an important role in inducing salivary responses to food cues. We discuss directions for future research as well as the role of simulations for other appetitive processes.  相似文献   
44.
Changes in gene expression associated with skeletal muscle atrophy due to aging are distinct from those due to disuse, suggesting that the response of old muscle to inactivity may be altered. The goal of this study was to identify changes in muscle gene expression that may contribute to loss of adaptability of old muscle. Muscle atrophy was induced in young adult (6-mo) and old (32-mo) male Brown Norway/F344 rats by 2 wk of hindlimb suspension (HS), and soleus muscles were analyzed by cDNA microarrays. Overall, similar changes in gene expression with HS were observed in young and old muscles for genes encoding proteins involved in protein folding (heat shock proteins), muscle structure, and contraction, extracellular matrix, and nucleic acid binding. More genes encoding transport and receptor proteins were differentially expressed in the soleus muscle from young rats, while in soleus muscle from old rats more genes that encoded ribosomal proteins were upregulated. The gene encoding the cold-shock protein RNA-binding motif protein-3 (RBM3) was induced most highly with HS in muscle from old rats, verified by real-time RT-PCR, while no difference with age was observed. The cold-inducible RNA-binding protein (Cirp) gene was also overexpressed with HS, whereas cold-shock protein Y-box-binding protein-1 was not. A time course analysis of RBM3 mRNA abundance during HS showed that upregulation occurred after apoptotic nuclei and markers of protein degradation increased. We conclude that a cold-shock response may be part of a compensatory mechanism in muscles undergoing atrophy to preserve remaining muscle mass and that RBM3 may be a therapeutic target to prevent muscle loss.  相似文献   
45.
46.
47.

Background  

Kinetochores are large multi-protein structures that assemble on centromeric DNA (CEN DNA) and mediate the binding of chromosomes to microtubules. Comprising 125 base-pairs of CEN DNA and 70 or more protein components, Saccharomyces cerevisiae kinetochores are among the best understood. In contrast, most fungal, plant and animal cells assemble kinetochores on CENs that are longer and more complex, raising the question of whether kinetochore architecture has been conserved through evolution, despite considerable divergence in CEN sequence.  相似文献   
48.
The cell regulatory volume decrease (RVD) response triggered by hypotonic solutions is mainly achieved by the coordinated activity of Cl- and K+ channels. We now describe the molecular nature of the K(+) channels involved in the RVD response of the human bronchial epithelial (HBE) cell line 16HBE14o-. These cells, under isotonic conditions, present a K+ current consistent with the activity of maxi K+ channels, confirmed by RT-PCR and Western blot. Single-channel and whole cell maxi K+ currents were readily and reversibly activated following the exposure of HBE cells to a 28% hypotonic solution. Both maxi K+ current activation and RVD response showed calcium dependency, inhibition by TEA, Ba2+, iberiotoxin, and the cationic channel blocker Gd3+ but were insensitive to clofilium, clotrimazole, and apamin. The presence of the recently cloned swelling-activated, Gd3+-sensitive cation channels (TRPV4, also known as OTRPC4, TRP12, or VR-OAC) was detected by RT-PCR in HBE cells. This channel, TRPV4, which senses changes in volume, might provide the pathway for Ca2+ influx under hypotonic solutions and, consequently, for the activation of maxi K+ channels.  相似文献   
49.
Simultaneous measurements of chlorophyll (Chl) fluorescence and CO2 assimilation (A) in Vicia faba leaves were taken during the first weeks of growth to evaluate the protective effect of 24-epibrassinolide (EBR) against damage caused by the application of the herbicide terbutryn (Terb) at pre-emergence. V. faba seeds were incubated for 24 h in EBR solutions (2 × 10−6 or 2 × 10−5 mM) and immediately sown. Terb was applied at recommended doses (1.47 or 1.96 kg ha−1) at pre-emergence. The highest dose of Terb strongly decreased CO2 assimilation, the maximum quantum yield of PSII photochemistry in the dark-adapted state (F V/F M), the nonphotochemical quenching (NPQ), and the effective quantum yield (ΔF/FM) during the first 3–4 weeks after plant emergence. Moreover, Terb increased the basal quantum yield of nonphotochemical processes (F 0/F M), the degree of reaction center closure (1 − q p), and the fraction of light absorbed in PSII antennae that was dissipated via thermal energy dissipation in the antennae (1 − FV/FM). The herbicide also significantly reduced plant growth at the end of the experiment as well as plant length, dry weight, and number of leaves. The application of EBR to V. faba seeds before sowing strongly diminished the effect of Terb on fluorescence parameters and CO2 assimilation, which recovered 13 days after plant emergence and showed values similar to those of control plants. The protective effect of EBR on CO2 assimilation was detected at a photosynthetic photon flux density (PFD) of 650 μmol m−2 s−1 and the effect on ΔF/FM and photosynthetic electron transport (J) was detected under actinic lightings up to 1750 μmol m−2 s−1. The highest dose of EBR also counteracted the decrease in plant growth caused by Terb, and plants registered the same growth values as controls.  相似文献   
50.
Kimani  Tabitha  Schelling  Esther  Bett  Bernard  Ngigi  Margaret  Randolph  Tom  Fuhrimann  Samuel 《EcoHealth》2016,13(4):729-742
EcoHealth - In controlling Rift Valley fever, public health sector optimises health benefits by considering cost-effective control options. We modelled cost-effectiveness of livestock RVF control...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号