首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5402篇
  免费   563篇
  国内免费   3篇
  2023年   22篇
  2022年   64篇
  2021年   119篇
  2020年   78篇
  2019年   84篇
  2018年   132篇
  2017年   94篇
  2016年   198篇
  2015年   300篇
  2014年   302篇
  2013年   332篇
  2012年   414篇
  2011年   379篇
  2010年   244篇
  2009年   239篇
  2008年   279篇
  2007年   338篇
  2006年   261篇
  2005年   249篇
  2004年   200篇
  2003年   189篇
  2002年   219篇
  2001年   101篇
  2000年   76篇
  1999年   88篇
  1998年   54篇
  1997年   57篇
  1996年   35篇
  1995年   30篇
  1994年   44篇
  1993年   28篇
  1992年   71篇
  1991年   51篇
  1990年   45篇
  1989年   48篇
  1988年   25篇
  1987年   34篇
  1986年   31篇
  1985年   40篇
  1984年   47篇
  1983年   28篇
  1982年   36篇
  1981年   23篇
  1980年   18篇
  1979年   15篇
  1978年   22篇
  1977年   19篇
  1975年   15篇
  1974年   12篇
  1973年   18篇
排序方式: 共有5968条查询结果,搜索用时 78 毫秒
891.
Abnormal protein glycosylation is observed in many common disorders like cancer, inflammation, Alzheimer’s disease and diabetes. However, the actual use of this information in clinical diagnostics is still very limited. Information is usually derived from analysis of total serum N-glycan profiling methods, whereas the current use of glycoprotein biomarkers in the clinical setting is commonly based on protein levels. It can be envisioned that combining protein levels and their glycan isoforms would increase specificity for early diagnosis and therapy monitoring. To establish diagnostic assays, based on the mass spectrometric analysis of protein-specific glycosylation abnormalities, still many technical improvements have to be made. In addition, clinical validation is equally important as well as an understanding of the genetic and environmental factors that determine the protein-specific glycosylation abnormalities. Important lessons can be learned from the group of monogenic disorders in the glycosylation pathway, the Congenital Disorders of Glycosylation (CDG). Now that more and more genetic defects are being unraveled, we start to learn how genetic factors influence glycomics profiles of individual and total serum proteins. Although only in its initial stages, such studies suggest the importance to establish diagnostic assays for protein-specific glycosylation profiling, and the need to look beyond the single glycoprotein diagnostic test. Here, we review progress in and lessons from genetic disease, and review the increasing opportunities of mass spectrometry to analyze protein glycosylation in the clinical diagnostic setting. Furthermore, we will discuss the possibilities to expand current CDG diagnostics and how this can be used to approach glycoprotein biomarkers for more common diseases.  相似文献   
892.
893.
894.
895.
896.
897.
898.
Cytochrome P450s are a superfamily of heme containing enzymes that use molecular oxygen and electrons from reduced nicotinamide cofactors to monooxygenate organic substrates. The fatty acid hydroxylase P450BM-3 has been particularly widely studied due to its stability, high activity, similarity to mammalian P450s, and presence of a cytochrome P450 reductase domain that allows the enzyme to directly receive electrons from NADPH without a requirement for additional redox proteins. We previously characterized the substrate N-palmitoylglycine, which found extensive use in studies of P450BM-3 due to its high affinity, high turnover number, and increased solubility as compared to fatty acid substrates. Here, we report that even higher affinity substrates can be designed by acylation of other amino acids, resulting in P450BM-3 substrates with dissociation constants below 100 nM. N-Palmitoyl-l-leucine and N-palmitoyl-l-methionine were found to have the highest affinity, with dissociation constants of less than 8 nM and turnover numbers similar to palmitic acid and N-palmitoylglycine. The interactions of the amino acid side chains with a hydrophobic pocket near R47, as revealed by our crystal structure determination of N-palmitoyl-l-methionine bound to the heme domain of P450BM-3, appears to be responsible for increasing the affinity of substrates. The side chain of R47, previously shown to be important in interactions with negatively charged substrates, does not interact strongly with N-palmitoyl-l-methionine and is found positioned at the enzyme-solvent interface. These are the tightest binding substrates for P450BM-3 reported to date, and the affinity likely approaches the maximum attainable affinity for the binding of substrates of this size to P450BM-3.  相似文献   
899.
900.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号