首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6299篇
  免费   405篇
  2023年   16篇
  2022年   58篇
  2021年   105篇
  2020年   63篇
  2019年   88篇
  2018年   130篇
  2017年   108篇
  2016年   199篇
  2015年   313篇
  2014年   359篇
  2013年   484篇
  2012年   600篇
  2011年   537篇
  2010年   337篇
  2009年   293篇
  2008年   362篇
  2007年   359篇
  2006年   343篇
  2005年   306篇
  2004年   286篇
  2003年   288篇
  2002年   267篇
  2001年   47篇
  2000年   47篇
  1999年   54篇
  1998年   84篇
  1997年   52篇
  1996年   50篇
  1995年   55篇
  1994年   43篇
  1993年   38篇
  1992年   45篇
  1991年   13篇
  1990年   25篇
  1989年   15篇
  1988年   19篇
  1987年   20篇
  1986年   13篇
  1985年   18篇
  1984年   25篇
  1983年   10篇
  1982年   12篇
  1981年   13篇
  1980年   7篇
  1978年   10篇
  1977年   14篇
  1976年   14篇
  1975年   9篇
  1974年   9篇
  1966年   5篇
排序方式: 共有6704条查询结果,搜索用时 171 毫秒
171.
The frog clade composed of the alsodid genera Alsodes + Eupsophus is the most species‐rich of the Patagonian endemic frog clades, including nearly 31 of the slightly more than 50 species of that region. The biology of this group of frogs is poorly known, its taxonomy quite complex (particularly Alsodes), and its diversity in chromosome number striking when compared with other frogs (collectively, there are species having 2n = 22, 2n = 26, 2n = 28, 2n = 30 or 2n = 34). We present a phylogenetic analysis of this Patagonian frog clade based on mitochondrial and nuclear gene sequences. We sequenced five mitochondrial genes (cytochrome b, cytochrome oxidase I, 12S, 16S, NADH dehydrogenase subunit 1) with three intervening tRNAs, and fragments of three nuclear genes (seven in absentia homolog 1, rhodopsin exon 1, RAG‐1), for a maximum of 6510 bp for multiple specimens from 26 of the 31 species. We recovered Eupsophus as polyphyletic, with E. antartandicus, E. sylvaticus, and E. taeniatus in Batrachylidae, in accordance with most previous hypotheses. Based on this result, we transfer E. antartandicus and E. taeniatus back to Batrachyla, and E. sylvaticus to Hylorina (resurrected from the synonymy of Eupsophus), remediating the paraphyly of Eupsophus. Our results strongly corroborate the monophyly of Alsodes + Eupsophus (sensu stricto), the individual monophyly of these genera, and the monophyly of the species groups of Eupsophus. They also show the non‐monophyly of all non‐monotypic species groups of Alsodes proposed in the past. Our results expose several taxonomic problems particularly in Alsodes, and to a lesser extent in Eupsophus. This phylogenetic context suggests a rich evolutionary history of karyotypic diversification in the clade, in part corroborating previous hypotheses. In Alsodes, we predict three independent transformations of chromosome number from the plesiomorphic 2n = 26. All these, strikingly, involve increments or reductions of pairs of haploid chromosomes. Finally, the phylogenetic pattern recovered for Alsodes and Eupsophus suggests a trans‐Andean origin and diversification of the group, with multiple, independent ingressions over cis‐Andean regions.  相似文献   
172.

Background and aims

The possible influence of phosphorus (P) on iron (Fe) deficiency chlorosis in susceptible plants needs elucidation. In this work, we tested the hypothesis that Fe chlorosis can be aggravated at high levels of P in the substrate.

Methods

Chickpea, lupin and peanut (in a preliminary experiment), and lupin and sorghum (in a second, factorial experiment) were successively grown on artificial substrates consisting of mixtures of Fe oxide-coated sand (FOCS), calcium carbonate (calcite) sand (CCS) and quartz sand to which phosphate was added at different doses.

Results

The proportion of FOCS in the substrate had a significant positive effect on leaf chlorophyll concentration (as estimated via SPAD) in all crops. In the factorial experiment, the SPAD value was negatively affected by the proportion of CCS in the dicot (lupin) but not in the monocot (sorghum). In the preliminary experiment, increasing the P dose generally had little effect on the SPAD of plants grown on the FOCS-rich substrate but a negative effect on those grown on the FOCS-poor substrate. In the factorial experiment, the P dose negatively affected SPAD in both lupin and sorghum.

Conclusions

Iron acquisition by the plant is negatively influenced by P probably because the solubility of the Fe oxides decreases with increasing coverage of their surfaces by sorbed phosphate.  相似文献   
173.
We have shown that the circulating vaccine-derived polioviruses responsible for poliomyelitis outbreaks in Madagascar have recombinant genomes composed of sequences encoding capsid proteins derived from poliovaccine Sabin, mostly type 2 (PVS2), and sequences encoding nonstructural proteins derived from other human enteroviruses. Interestingly, almost all of these recombinant genomes encode a nonstructural 3A protein related to that of field coxsackievirus A17 (CV-A17) strains. Here, we investigated the repercussions of this exchange, by assessing the role of the 3A proteins of PVS2 and CV-A17 and their putative cellular partners in viral replication. We found that the Golgi protein acyl-coenzyme A binding domain-containing 3 (ACBD3), recently identified as an interactor for the 3A proteins of several picornaviruses, interacts with the 3A proteins of PVS2 and CV-A17 at viral RNA replication sites, in human neuroblastoma cells infected with either PVS2 or a PVS2 recombinant encoding a 3A protein from CV-A17 [PVS2-3A(CV-A17)]. The small interfering RNA-mediated downregulation of ACBD3 significantly increased the growth of both viruses, suggesting that ACBD3 slowed viral replication. This was confirmed with replicons. Furthermore, PVS2-3A(CV-A17) was more resistant to the replication-inhibiting effect of ACBD3 than the PVS2 strain, and the amino acid in position 12 of 3A was involved in modulating the sensitivity of viral replication to ACBD3. Overall, our results indicate that exchanges of nonstructural proteins can modify the relationships between enterovirus recombinants and cellular interactors and may thus be one of the factors favoring their emergence.  相似文献   
174.
Replication-competent poxvirus vectors with an attenuation phenotype and with a high immunogenic capacity of the foreign expressed antigen are being pursued as novel vaccine vectors against different pathogens. In this investigation, we have examined the replication and immunogenic characteristics of two vaccinia virus (VACV) mutants, M65 and M101. These mutants were generated after 65 and 101 serial passages of persistently infected Friend erythroleukemia (FEL) cells. In cultured cells of different origins, the mutants are replication competent and have growth kinetics similar to or slightly reduced in comparison with those of the parental Western Reserve (WR) virus strain. In normal and immune-suppressed infected mice, the mutants showed different levels of attenuation and pathogenicity in comparison with WR and modified vaccinia Ankara (MVA) strains. Wide genome analysis after deep sequencing revealed selected genomic deletions and mutations in a number of viral open reading frames (ORFs). Mice immunized in a DNA prime/mutant boost regimen with viral vectors expressing the LACK (Leishmania homologue for receptors of activated C kinase) antigen of Leishmania infantum showed protection or a delay in the onset of cutaneous leishmaniasis. Protection was similar to that triggered by MVA-LACK. In immunized mice, both polyfunctional CD4+ and CD8+ T cells with an effector memory phenotype were activated by the two mutants, but the DNA-LACK/M65-LACK protocol preferentially induced CD4+ whereas DNA-LACK/M101-LACK preferentially induced CD8+ T cell responses. Altogether, our findings showed the adaptive changes of the WR genome during long-term virus-host cell interaction and how the replication competency of M65 and M101 mutants confers distinct biological properties and immunogenicity in mice compared to those of the MVA strain. These mutants could have applicability for understanding VACV biology and as potential vaccine vectors against pathogens and tumors.  相似文献   
175.
The Iberian mountain spiny fescues are a reticulate group of five diploid grass taxa consisting of three parental species and two putative hybrids: F. × souliei (F. eskia × F. quadriflora) and F. × picoeuropeana (F. eskia × F. gautieri). Phenotypic and molecular studies were conducted with the aim of determining the taxonomic boundaries and genetic relationships of the five taxa and disentangling the origins of the two hybrids. Statistical analyses of 31 selected phenotypic traits were conducted on individuals from 159 populations and on nine type specimens. Molecular analyses of random amplified polymorphic DNA (RAPD) markers were performed on 29 populations. The phenotypic analyses detected significant differences between the five taxa and demonstrated the overall intermediacy of the F. × picoeuropeana and F. × souliei between their respective parents. The RAPD analysis corroborated the genetic differentiation of F. eskia, F. gautieri and F. quadriflora and the intermediate nature of the two hybrids; however, they also detected genetic variation within F. × picoeuropeana. These results suggest distinct origins for F. × picoeuropeana in the Cantabrian and Pyrenean mountains, with the sporadic Pyrenean populations having potentially resulted from recent hybridizations and the stabilized Cantabrian ones from older events followed by potential displacements of the parents. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 173 , 676–706.  相似文献   
176.
Outer membrane vesicles (OMVs) from Gram-negative bacteria are known to be involved in lateral DNA transfer, but the presence of DNA in these vesicles has remained difficult to explain. An ultrastructural study of the Antarctic psychrotolerant bacterium Shewanella vesiculosa M7T has revealed that this Gram-negative bacterium naturally releases conventional one-bilayer OMVs through a process in which the outer membrane is exfoliated and only the periplasm is entrapped, together with a more complex type of OMV, previously undescribed, which on formation drag along inner membrane and cytoplasmic content and can therefore also entrap DNA. These vesicles, with a double-bilayer structure and containing electron-dense material, were visualized by transmission electron microscopy (TEM) after high-pressure freezing and freeze-substitution (HPF-FS), and their DNA content was fluorometrically quantified as 1.8 ± 0.24 ng DNA/μg OMV protein. The new double-bilayer OMVs were estimated by cryo-TEM to represent 0.1% of total vesicles. The presence of DNA inside the vesicles was confirmed by gold DNA immunolabeling with a specific monoclonal IgM against double-stranded DNA. In addition, a proteomic study of purified membrane vesicles confirmed the presence of plasma membrane and cytoplasmic proteins in OMVs from this strain. Our data demonstrate the existence of a previously unobserved type of double-bilayer OMV in the Gram-negative bacterium Shewanella vesiculosa M7T that can incorporate DNA, for which we propose the name outer-inner membrane vesicle (O-IMV).  相似文献   
177.
This paper intends to open a dialogue about the use of two specific labels in the US (i.e. ‘Chicanas’ and ‘Latinas’), with a special emphasis on how they are used in the US academy as both markers and identities. More specifically, this paper explores recent trends in the US academy by which women of Latin American descent are lumped together under the rubric Latinas, and in many cases assumed to be equivalent to Chicanas. Arguing that academia must learn to be more thoughtful when creating, defining and adopting categories, the article warns against recreating the very power dynamics we find in mainstream US society by way of these specific labels. Finally, ‘So you are a mestiza’ reminds its readers that, as a practice, social justice asks for a fundamental recognition of a culturally pluralist, democratic society. In this kind of society, histories must endure and multiple realities must be acknowledged.  相似文献   
178.
179.
This investigation was designed to explore the relationships between lichen symbionts (phycobiont and mycobiont) and the substrate on which they grow by examining the chemical and ultrastructural features of the lichen-soil interface. These lichens form an integral part of microbiotic soil crusts. Fragments of three different lichen biotypes growing over gypsum crystals and marls were fixed and embedded in resin. The lichen-substratum interface was then examined by scanning electron microscopy with backscattered electron imaging. In situ observation, microanalytical (EDS), and FT-Raman plus infrared spectroscopy of the lichen-substratum interface indicated that different ultrastructural features of the mycobiont were related to biogeochemical processes and Ca 2+ distribution in the soil crust. Phycobionts were observed to make direct contact with the substratum and to be surrounded by a nondifferentiated thallus structure. These observations suggest that they can grow outside the thallus in the early stages of lichen development in the semi-arid conditions of their habitat. The particular ultrastructural features of the lichen thallus and of the lichen-substratum interface appear to have marked effects on runoff phenomena and ponding generation of the surface.  相似文献   
180.
Bacterial osmoadaptation involves the cytoplasmic accumulation of compatible solutes to counteract extracellular osmolarity. The halophilic and highly halotolerant bacterium Chromohalobacter salexigens is able to grow up to 3 m NaCl in a minimal medium due to the de novo synthesis of ectoines. This is an osmoregulated pathway that burdens central metabolic routes by quantitatively drawing off TCA cycle intermediaries. Consequently, metabolism in C. salexigens has adapted to support this biosynthetic route. Metabolism of C. salexigens is more efficient at high salinity than at low salinity, as reflected by lower glucose consumption, lower metabolite overflow, and higher biomass yield. At low salinity, by-products (mainly gluconate, pyruvate, and acetate) accumulate extracellularly. Using [1-13C]-, [2-13C]-, [6-13C]-, and [U-13C6]glucose as carbon sources, we were able to determine the main central metabolic pathways involved in ectoines biosynthesis from glucose. C. salexigens uses the Entner-Doudoroff pathway rather than the standard glycolytic pathway for glucose catabolism, and anaplerotic activity is high to replenish the TCA cycle with the intermediaries withdrawn for ectoines biosynthesis. Metabolic flux ratios at low and high salinity were similar, revealing a certain metabolic rigidity, probably due to its specialization to support high biosynthetic fluxes and partially explaining why metabolic yields are so highly affected by salinity. This work represents an important contribution to the elucidation of specific metabolic adaptations in compatible solute-accumulating halophilic bacteria.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号