首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   386篇
  免费   132篇
  国内免费   4篇
  2022年   3篇
  2021年   10篇
  2020年   5篇
  2018年   5篇
  2017年   9篇
  2016年   12篇
  2015年   15篇
  2014年   17篇
  2013年   21篇
  2012年   22篇
  2011年   23篇
  2010年   14篇
  2009年   13篇
  2008年   12篇
  2007年   16篇
  2006年   25篇
  2005年   18篇
  2004年   17篇
  2003年   17篇
  2002年   14篇
  2001年   18篇
  2000年   14篇
  1999年   7篇
  1998年   12篇
  1997年   7篇
  1996年   8篇
  1995年   8篇
  1994年   9篇
  1993年   7篇
  1992年   11篇
  1991年   17篇
  1990年   5篇
  1989年   8篇
  1988年   4篇
  1987年   9篇
  1986年   4篇
  1983年   4篇
  1981年   3篇
  1980年   6篇
  1979年   5篇
  1978年   5篇
  1977年   5篇
  1975年   6篇
  1974年   5篇
  1973年   4篇
  1971年   6篇
  1970年   3篇
  1969年   3篇
  1966年   4篇
  1954年   4篇
排序方式: 共有522条查询结果,搜索用时 15 毫秒
81.
82.
83.
Trade in freshwater ornamental fish in South Africa is currently regulated by a ‘blacklist’ to prevent potentially invasive taxa from establishing in the country. Because its effective implementation requires accurate identification, the aim of the present study was to test whether DNA barcoding is a useful tool to identify freshwater fishes in the South African pet trade. A total of 351 aquarium fish specimens, representing 185 traded taxa, were sequenced for the mitochondrial COI barcoding marker in 2011 and 2012. Lake Malawi cichlids were treated as a single group due to a lack of resolution in their COI marker, resulting in a data set of 137 successfully sequenced taxa. The Barcode Of Life Database (BOLD) and GenBank were used for taxonomic assignment comparisons. The genetic identification matched the scientific name inferred from the trade name for 60 taxa (43.8%) using BOLD, and for 67 taxa (48.9%) using GenBank. A genetic ID could not be assigned in 47 (34.3%) cases using BOLD and in 37 cases (27%) using GenBank. Whereas DNA barcoding can be a useful tool to help identify imported freshwater fishes, it requires further development of publicly available databases to become a reliable means of identification.  相似文献   
84.
Rotavirus, a nonturreted member of the Reoviridae, is the causative agent of severe infantile diarrhea. The double-stranded RNA genome encodes six structural proteins that make up the triple-layer particle. X-ray crystallography has elucidated the structure of one of these capsid proteins, VP6, and two domains from VP4, the spike protein. Complementing this work, electron cryomicroscopy (cryoEM) has provided relatively low-resolution structures for the triple-layer capsid in several biochemical states. However, a complete, high-resolution structural model of rotavirus remains unresolved. Combining new structural analysis techniques with the subnanometer-resolution cryoEM structure of rotavirus, we now provide a more detailed structural model for the major capsid proteins and their interactions within the triple-layer particle. Through a series of intersubunit interactions, the spike protein (VP4) adopts a dimeric appearance above the capsid surface, while forming a trimeric base anchored inside one of the three types of aqueous channels between VP7 and VP6 capsid layers. While the trimeric base suggests the presence of three VP4 molecules in one spike, only hints of the third molecule are observed above the capsid surface. Beyond their interactions with VP4, the interactions between VP6 and VP7 subunits could also be readily identified. In the innermost T=1 layer composed of VP2, visualization of the secondary structure elements allowed us to identify the polypeptide fold for VP2 and examine the complex network of interactions between this layer and the T=13 VP6 layer. This integrated structural approach has resulted in a relatively high-resolution structural model for the complete, infectious structure of rotavirus, as well as revealing the subtle nuances required for maintaining interactions in such a large macromolecular assembly.  相似文献   
85.

Background

Jails are an important venue of HIV care and a place for identification, treatment and referral for care. HIV infected inmates in the San Francisco County jail are offered antiretroviral treatment (ART), which many take only while in jail. We evaluated the effect of ART administration in a cohort of jail inmates going in and out of jail over a nine year period.

Methodology/Principal Findings

In this retrospective study, we examined inmates with HIV going in and out of jail. Inmates were categorized by patterns of ART use: continuous ART - ART both in and out of jail, intermittent ART - ART only in jail; never on ART - eligible by national guidelines, but refused ART. CD4 and HIV viral load (VL) were compared over time in these groups. Over a 9 year period, 512 inmates were studied: 388 (76%) on intermittent ART, 79 (15%) on continuous ART and 45(9%) never-on ART. In a linear mixed model analysis, inmates on intermittent ART were 1.43; 95%CI (1.03, 1.99) times and those never on ART were 2.89; 95%CI (1.71, 4.87) times more likely to have higher VL than inmates on continuous ART. Furthermore, Inmates on intermittent ART and never-on ART lost 1.60; 95%CI (1.06, 2.13) and 1.97; 95%CI (0.96, 3.00) more CD4 cells per month, respectively, compared to continuously treated inmates. The continuous ART inmates gained 0.67CD4 cells/month.

Conclusions/Significance

Continuous ART therapy in jail inmate''s benefits CD4 cell counts and control of VL especially compared to those who never took ART. Although jail inmates on intermittent ART were more likely to lose CD4 cells and experience higher VL over time than those on continuous ART, CD4 cell loss was slower in these inmates as compared to inmates never on ART. Further studies are needed to evaluate whether or not intermittent ART provides some benefit in outcome if continuous ART is not possible or likely.  相似文献   
86.
Norovirus disease: changing epidemiology and host susceptibility factors   总被引:20,自引:0,他引:20  
Noroviruses cause the majority of acute viral gastroenteritis cases that occur worldwide. The increased recognition of noroviruses as the cause of outbreaks and sporadic disease is due to the recent availability of improved norovirus-specific diagnostics. Transmission of these viruses is facilitated by their high prevalence in the community, shedding of infectious virus particles from asymptomatic individuals and the high stability of the virus in the environment. Currently, the spectrum of clinical disease and the understanding of host susceptibility factors are changing. Cases of chronic norovirus gastroenteritis have been observed in transplant recipients and unusual clinical presentations have been recognized in otherwise healthy adults that are under physical stress. Recently, noroviruses were found to bind to gut-expressed carbohydrates, leading to a correlation between a person's genetically determined carbohydrate expression and their susceptibility to Norwalk virus infection. Greater community surveillance and further investigation of carbohydrate receptor-binding properties could provide further insights into norovirus transmission, susceptibility and pathogenesis, and should aid in developing vaccines and antiviral therapies for this common viral disease.  相似文献   
87.
Interactions between rotavirus and gastrointestinal cells   总被引:3,自引:0,他引:3  
Rotaviruses are the leading cause of life-threatening diarrheal disease in infants and in young animals worldwide. The outcome of rotavirus infection of intestinal epithelial cells is more complex and involves induction of more diverse cellular responses than initially appreciated. Similar to bacteria, the pathogenesis of rotavirus-induced disease involves an enterotoxin, activation of the enteric nervous system and malabsorption, suggesting that common mechanisms of pathogenesis may exist between viral and bacterial pathogens.  相似文献   
88.
89.
90.
苯肼对红细胞在体衰老过程中微观流变特性的影响   总被引:2,自引:1,他引:2  
在Brunara等人用苯肼使动物造成急性溶血性贫血的方法基础上,建立一种由急性溶血性贫血后,而诱发家兔幼红细胞增多的非正常生理状态的红细胞在体衰老模型,继而研究新生红细胞从产生到死亡死亡过程,即衰老过程的流变学特性的变化规律。通过对新生红细胞的压积、变形、取向及与之相应的全血的粘度、血沉等指标的连续60多天的监测,发现红细胞在衰老过程中的微观流变学特性确实有明显改变。红细胞在体衰老过程中微观流变特性逐渐变差。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号