首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   877篇
  免费   64篇
  941篇
  2023年   5篇
  2022年   10篇
  2021年   16篇
  2020年   9篇
  2019年   16篇
  2018年   18篇
  2017年   15篇
  2016年   34篇
  2015年   50篇
  2014年   55篇
  2013年   59篇
  2012年   80篇
  2011年   74篇
  2010年   63篇
  2009年   55篇
  2008年   46篇
  2007年   52篇
  2006年   53篇
  2005年   42篇
  2004年   33篇
  2003年   30篇
  2002年   41篇
  2001年   7篇
  2000年   7篇
  1999年   13篇
  1998年   3篇
  1997年   5篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1993年   5篇
  1992年   3篇
  1991年   5篇
  1990年   6篇
  1989年   2篇
  1988年   2篇
  1987年   3篇
  1985年   1篇
  1982年   2篇
  1981年   3篇
  1980年   2篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1968年   1篇
  1965年   1篇
  1953年   1篇
排序方式: 共有941条查询结果,搜索用时 12 毫秒
61.
The Stenogastrinae wasps have been proposed as a key group for an understanding of social evolution in insects, but the phylogeny of the group is still under discussion. The use of chemical characters, in particular cuticular hydrocarbons, for insect taxonomy is relatively recent and only a few studies have been conducted on the cuticular polar substances. In this work, we ascertain, by the matrix‐assisted laser desorption ionization‐time of flight mass spectrometry technique, that different species of primitively eusocial hover wasps have different compositions of the epicuticular polar compounds ranging from 900 to 3600 Da. General linear model analysis and discriminant analysis showed that the average spectral profiles of this fraction can be diagnostic for identification of the species. Moreover, for the first time we show population diversification in the medium MW polar cuticular mixtures in insects. In conclusion, the results demonstrate that the chemical characters are consistent with the physical characters and the study support the importance of medium MW polar substances as powerful tools for systematics (chemosystematics) and chemical ecology (fertility signal and population characterization) in a primitively social insect taxon.  相似文献   
62.
Deep-water sharks are among the most vulnerable deep-water taxa because of their extremely conservative life-history strategies (i.e., late maturation, slow growth, and reproductive rates), yet little is known about their biology and ecology. Thus, this study aimed at investigating the trophic ecology of five deep-water shark species, the birdbeak dogfish (Deania calcea), the arrowhead (D. profundorum), the smooth lanternshark (Etmopterus pusillus), the blackmouth catshark (Galeus melastomus) and the knifetooth dogfish (Scymnodon ringens) sampled onboard a crustacean bottom-trawler off the south-west coast of Portugal. We combined carbon and nitrogen stable isotopes with RNA and DNA (RD) ratios to investigate the main groups of prey assimilated by these species and their nutritional condition, respectively. Stable isotopes revealed overall small interspecific variability in the contribution of different taxonomic groups to sharks' tissues, as well as in the origin of their prey. S. ringens presented higher δ15N and δ13C values than the other species, suggesting reliance on bathyal cephalopods, crustaceans and teleosts; the remaining species likely assimilated bathy-mesopelagic prey. The RD ratios indicated that most of the individuals had an overall adequate nutritional condition and had recently eaten. This information, combined with the fact that stable isotopes indicate that sharks assimilated prey from the local or nearby food webs (including commercially important shrimps), suggests a potential overlap between this fishing area and their foraging grounds, which requires further attention.  相似文献   
63.
Multiple sclerosis is an inflammatory, demyelinating, and neurodegenerative disease of the central nervous system. In most patients, the disease initiates with an episode of neurological disturbance referred to as clinically isolated syndrome, but not all patients with this syndrome develop multiple sclerosis over time, and currently, there is no clinical test that can conclusively establish whether a patient with a clinically isolated syndrome will eventually develop clinically defined multiple sclerosis. Here, we took advantage of the capabilities of targeted mass spectrometry to establish a diagnostic molecular classifier with high sensitivity and specificity able to differentiate between clinically isolated syndrome patients with a high and a low risk of developing multiple sclerosis. Based on the combination of abundances of proteins chitinase 3-like 1 and ala-β-his-dipeptidase in cerebrospinal fluid, we built a statistical model able to assign to each patient a precise probability of conversion to clinically defined multiple sclerosis. Our results are of special relevance for patients affected by multiple sclerosis as early treatment can prevent brain damage and slow down the disease progression.Multiple sclerosis is an inflammatory, demyelinating, and neurodegenerative disease of the central nervous system, and although the etiology of the disease is not fully understood, it is probably caused by the interaction of a complex genetic architecture and environmental factors. Multiple sclerosis affects over 2 million people worldwide, and it is typically diagnosed between ages 20 and 40, thus making a significant impact on public health and its economy (1).In most patients, the disease initiates with an episode of neurological disturbance referred to as clinically isolated syndrome. However, not all patients with this syndrome develop multiple sclerosis over time (2), and currently, the magnetic resonance imaging (MRI) abnormalities and the presence of IgG oligoclonal bands in cerebrospinal fluid (CSF) are used as predictors for later conversion to clinically definite multiple sclerosis (CDMS)1 (35). Although such abnormalities are considered important factors that influence the likelihood of developing CDMS, there is currently no clinical test that can conclusively establish whether a patient with a clinically isolated syndrome will eventually develop CDMS.The lack of diagnostic and prognostic biomarkers is a common problem for many diseases lacking a complete etiology, which is the case for most neurological disorders related to the central nervous system such as Parkinson''s and Alzheimer''s diseases, schizophrenia, and multiple sclerosis. In the particular case of multiple sclerosis, early treatment of patients with a clinically isolated syndrome can prevent brain damage and slow down the disease progression (6). Therefore, the availability of a diagnostic test in the initial stages of the disease is not only desirable but also of extreme relevance to attenuate the degenerative effects of the disease.Biomarker validation has traditionally been dominated by enzyme linked immuno-sorbent assays (ELISA), but recent advances in proteomics techniques have enabled the measurement of a subset of selected proteins over a large dynamic concentration range in multiple samples. Targeted mass spectrometry has thus become the method of choice when quantifying simultaneously a panel of proteins across many different biological samples (79). In particular, selected reaction monitoring (SRM) is the gold standard targeted mass spectrometry method for protein quantification due to its high precision, reliability, and throughput (1013). This targeted mass spectrometry method is performed on triple quadrupole instruments, in which a predefined peptide precursor ion is first isolated, and then selected fragment ions arising from its collisional dissociation are measured over time. Each pair of precursor and fragment ion is called a transition, and multiple transitions can be coordinately measured and used to conclusively identify and quantify a peptide in a clinical complex sample.In a previous study, we used a screening mass spectrometric approach to discover potential markers for multiple sclerosis conversion in patients that initially presented a clinical isolated syndrome (14). In that discovery phase, quantitative mass spectrometry with iTRAQ labeling was used to measure protein abundances in pooled CSF samples from patients presenting a clinical isolated syndrome that either remained normal (CIS) or had eventually converted to clinically definite multiple sclerosis (CDMS) (n = 60). In the initial screening, several proteins exhibited significant differences in abundance when comparing these two groups of patients. The abundance change in one of the altered proteins, chitinase 3-like 1 (CH3L1), was confirmed by ELISA in CSF of individual patients, whereas for others, such as semaphorin 7A (SEM7A) and ala-β-his-dipeptidase (CNDP1), their abundance changes were confirmed by targeted mass spectrometry in follow-up studies with independent cohorts (15). Moreover, the levels of CH3L1 were associated with brain MRI abnormalities and disability progression during the follow-up period, as well as with shorter time to conversion to clinically definite multiple sclerosis (14).We now set out to establish a diagnostic protein classifier with high sensitivity and specificity able to differentiate between patients with a clinically isolated syndrome that have either a high or a low risk of developing clinically definite multiple sclerosis over time. For this purpose, CSF samples from an independent patient cohort from the one used in the discovery study were collected, and a set of preselected protein biomarker candidates were systematically quantified by targeted mass spectrometry (SRM) and evaluated for their classification power. Out of this study, we established a protein classifier based on the combination of abundances of proteins chitinase 3-like 1 and ala-β-his-dipeptidase, which is able to differentiate with high sensitivity and specificity between patients with a clinically isolated syndrome that have either a high or low risk of developing clinically definite multiple sclerosis. Moreover, the statistical model built around this protein classifier enables clinicians to easily assign to each patient a precise probability of conversion to clinically definite multiple sclerosis (Fig. 1).Open in a separate windowFig. 1.General workflow used in the present study. Initially, protein candidates identified in our previous discovery studies—together with several proteins described by other groups—were selected and quantified by targeted mass spectrometry (SRM) in a relatively large cohort individual patients. Protein quantities were then evaluated by their capability of classifying patients with clinical isolated syndrome, and thus, the best prognostic protein combination was identified.  相似文献   
64.
Alexandrium minutum is a toxic dinoflagellate widespread along the Mediterranean coasts. This species is frequently detected year-round at low concentrations within the Mediterranean basin. However, it only proliferates recurrently in some localities. Two affected areas are the Catalan and Sicilian coasts. In order to identify the factors determining the A. minutum blooms in the Mediterranean Sea, we compare the bloom conditions in two harbours: Arenys de Mar (Catalan coast, Spain) and Syracuse (Sicily, Italy), during 2002–2003. Arenys de Mar harbour is a fishing and leisure harbour and receives an input of freshwater rich in nutrients. Likewise, the Syracuse harbour – located on the Ionian coast of Sicily – is subject to freshwater inputs. Some points of this site are used for productive activities such as shellfish farming. A. minutum from the two areas studied were morphologically and genetically identical. In both sites, recurrent blooms take place from winter to spring. Surface water temperatures and salinities during A. minutum bloom events were 12–14.5 °C and 32–38, and 16–24 °C and 32–37.7 for Arenys and Syracuse, respectively. During the blooms, the spatial distribution of A. minutum in the two harbours, the physicochemical characteristics and the phytoplankton community were studied. Similarities in composition of the phytoplankton community were evidenced, with a clear dominance of dinoflagellates over the other taxa. In Arenys, the second dominant species was Prorocentrum micans followed by Scrippsiella spp. and Dinophysis sacculus. The same species were found in Syracuse although P. triestinum, and alternatively Lingulodinium polyedrum, reached cell densities much higher than the other dinoflagellates giving marked water discolourations.  相似文献   
65.
66.
Genetic data have revealed that the absence of Bacillus subtilis RecO and one of the end-processing avenues (AddAB or RecJ) renders cells as sensitive to DNA damaging agents as the null recA, suggesting that both end-resection pathways require RecO for recombination. RecA, in the rATP·Mg2+ bound form (RecA·ATP), is inactive to catalyze DNA recombination between linear double-stranded (ds) DNA and naked complementary circular single-stranded (ss) DNA. We showed that RecA·ATP could not nucleate and/or polymerize on SsbA·ssDNA or SsbB·ssDNA complexes. RecA·ATP nucleates and polymerizes on RecO·ssDNA·SsbA complexes more efficiently than on RecO·ssDNA·SsbB complexes. Limiting SsbA concentrations were sufficient to stimulate RecA·ATP assembly on the RecO·ssDNA·SsbB complexes. RecO and SsbA are necessary and sufficient to ‘activate’ RecA·ATP to catalyze DNA strand exchange, whereas the AddAB complex, RecO alone or in concert with SsbB was not sufficient. In presence of AddAB, RecO and SsbA are still necessary for efficient RecA·ATP-mediated three-strand exchange recombination. Based on genetic and biochemical data, we proposed that SsbA and RecO (or SsbA, RecO and RecR in vivo) are crucial for RecA activation for both, AddAB and RecJ–RecQ (RecS) recombinational repair pathways.  相似文献   
67.
68.
69.
The Raf-MEK-ERK MAP kinase cascade transmits signals from activated receptors into the cell to regulate proliferation and differentiation. The cascade is controlled by the Ras GTPase, which recruits Raf from the cytosol to the plasma membrane for activation. In turn, MEK, ERK, and scaffold proteins translocate to the plasma membrane for activation. Here, we examine the input-output properties of the Raf-MEK-ERK MAP kinase module in mammalian cells activated in different cellular contexts. We show that the MAP kinase module operates as a molecular switch in vivo but that the input sensitivity of the module is determined by subcellular location. Signal output from the module is sensitive to low-level input only when it is activated at the plasma membrane. This is because the threshold for activation is low at the plasma membrane, whereas the threshold for activation is high in the cytosol. Thus, the circuit configuration of the module at the plasma membrane generates maximal outputs from low-level analog inputs, allowing cells to process and respond appropriately to physiological stimuli. These results reveal the engineering logic behind the recruitment of elements of the module from the cytosol to the membrane for activation.  相似文献   
70.
The white wine Chacolía de Vizcaya/Bizkaiko Txakolina is characteristic from The Basque Country region and regulated under Appellation Contr?lée standards (BOPV 14/6/94). The objective of this study was the identification and selection of autochthonous yeast strains, to improve the conditions used to maintain the typical characteristics of this region wines. Yeasts identified as Saccharomyces bayanus isolated around these fields from 1996 to 1998, were subjected to a selective procedure based on enological characteristics and fermentative behaviour. Three of the selected strains were used to inoculate, at winery scale, two grape juice varieties accepted by the Appellation Contr?lée (Hondarrabi Zuri and Folle Blanche). The inoculated strains on the respective vinifications was followed by restriction fragment length polymorphism of mitochondrial DNA (REAmt) method with AluI enzyme, due to their specificity, short outcome, and technological simplicity compared with other molecular typing methods such as: chromosomal karyotyping analyzed by pulsed field gel electrophoresis, Random Amplified Polymorphic DNA-PCR (RAPD-PCR) and restriction fragment length polymorphism using the infrequently cutting enzyme SfiI (REA infrequent). This study demonstrated that strains with different phenotypic traits could show indistinguishable restriction patterns with REAmt, but could be discriminated using other typing methods such as RAPD-PCR, which although showing low reproducibility could be used as complementary to REAmt. Our results demonstrate that in spite of using autochthonous selected strains, the inoculation of musts with a particular strain do not guarantee its predominance and driving fermentation features. Of all yeast strains studied, strain no. 2 showed the best results in sensory testing and at the implantation process. Therefore, it could be used with commercial purposes for the production of Chacolí de Vizcaya/Bizkaiko Txakolina, especially when using musts from Folle Blanche.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号