首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   877篇
  免费   64篇
  941篇
  2023年   5篇
  2022年   10篇
  2021年   16篇
  2020年   9篇
  2019年   16篇
  2018年   18篇
  2017年   15篇
  2016年   34篇
  2015年   50篇
  2014年   55篇
  2013年   59篇
  2012年   80篇
  2011年   74篇
  2010年   63篇
  2009年   55篇
  2008年   46篇
  2007年   52篇
  2006年   53篇
  2005年   42篇
  2004年   33篇
  2003年   30篇
  2002年   41篇
  2001年   7篇
  2000年   7篇
  1999年   13篇
  1998年   3篇
  1997年   5篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1993年   5篇
  1992年   3篇
  1991年   5篇
  1990年   6篇
  1989年   2篇
  1988年   2篇
  1987年   3篇
  1985年   1篇
  1982年   2篇
  1981年   3篇
  1980年   2篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1968年   1篇
  1965年   1篇
  1953年   1篇
排序方式: 共有941条查询结果,搜索用时 12 毫秒
31.
Copper compounds, widely used to control plant-pathogenic bacteria, have traditionally been employed against fire blight, caused by Erwinia amylovora. However, recent studies have shown that some phytopathogenic bacteria enter into the viable-but-nonculturable (VBNC) state in the presence of copper. To determine whether copper kills E. amylovora or induces the VBNC state, a mineral medium without copper or supplemented with 0.005, 0.01, or 0.05 mM Cu2+ was inoculated with 107 CFU/ml of this bacterium and monitored over 9 months. Total and viable cell counts were determined by epifluorescence microscopy using the LIVE/DEAD kit and by flow cytometry with 5-cyano-2,3-ditolyl tetrazolium chloride and SYTO 13. Culturable cells were counted on King's B nonselective solid medium. Changes in the bacterial morphology in the presence of copper were observed by scanning electron microscopy. E. amylovora entered into the VBNC state at all three copper concentrations assayed, much faster when the copper concentration increased. The addition of different agents which complex copper allowed the resuscitation (restoration of culturability) of copper-induced VBNC cells. Finally, copper-induced VBNC cells were virulent only for the first 5 days, while resuscitated cells always regained their pathogenicity on immature fruits over 9 months. These results have shown, for the first time, the induction of the VBNC state in E. amylovora as a survival strategy against copper.  相似文献   
32.
Copper compounds, widely used to control plant-pathogenic bacteria, have traditionally been employed against fire blight, caused by Erwinia amylovora. However, recent studies have shown that some phytopathogenic bacteria enter into the viable-but-nonculturable (VBNC) state in the presence of copper. To determine whether copper kills E. amylovora or induces the VBNC state, a mineral medium without copper or supplemented with 0.005, 0.01, or 0.05 mM Cu(2+) was inoculated with 10(7) CFU/ml of this bacterium and monitored over 9 months. Total and viable cell counts were determined by epifluorescence microscopy using the LIVE/DEAD kit and by flow cytometry with 5-cyano-2,3-ditolyl tetrazolium chloride and SYTO 13. Culturable cells were counted on King's B nonselective solid medium. Changes in the bacterial morphology in the presence of copper were observed by scanning electron microscopy. E. amylovora entered into the VBNC state at all three copper concentrations assayed, much faster when the copper concentration increased. The addition of different agents which complex copper allowed the resuscitation (restoration of culturability) of copper-induced VBNC cells. Finally, copper-induced VBNC cells were virulent only for the first 5 days, while resuscitated cells always regained their pathogenicity on immature fruits over 9 months. These results have shown, for the first time, the induction of the VBNC state in E. amylovora as a survival strategy against copper.  相似文献   
33.
A procedure based on gas chromatography-mass spectrometry (GC-MS) is described for the determination of amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine (MDA), 3,4-methylenedioxymethamphetamine (MDMA, ecstasy), 3,4-methylenedioxyethylamphetamine (MDE or MDEA) and N-methyl-1-(3,4-methylenedioxyphenyl)-2-butanamine (MBDB) in hair. Hair samples were digested with 1 M sodium sulfide at 37 degrees C (by shaking for 3 h and was kept at room temperature overnight), and extracted with two sequential extraction procedures: liquid-liquid extraction with tert-butyl methyl ether and solid-phase extraction with Bond-Elut Certify columns. Extracted analytes were derivatised with N-methyl-bis(trifluoroacetamide), separated by a 5% phenylmethylsilicone column and determined by a mass spectrometer detector in selected ion monitoring mode. A good reproducibility (intra-assay R.S.D.=1.5-15.7%), accuracy (intra-assay error = 2.0-11.7%) and sensitivity (LOD=0.03-0.08 ng/mg hair) were attained. The method was successfully applied to the analysis of the proximal (1 cm) hair segment to assess recent self-reported use in "ecstasy" consumers. Otherwise, further studies are needed to validate methodology developed in case of amphetamine consumption.  相似文献   
34.
Disassembly of the yeast V-ATPase into cytosolic V1 and membrane V0 sectors inactivates MgATPase activity of the V1-ATPase. This inactivation requires the V1 H subunit (Parra, K. J., Keenan, K. L., and Kane, P. M. (2000) J. Biol. Chem. 275, 21761–21767), but its mechanism is not fully understood. The H subunit has two domains. Interactions of each domain with V1 and V0 subunits were identified by two-hybrid assay. The B subunit of the V1 catalytic headgroup interacted with the H subunit N-terminal domain (H-NT), and the C-terminal domain (H-CT) interacted with V1 subunits B, E (peripheral stalk), and D (central stalk), and the cytosolic N-terminal domain of V0 subunit Vph1p. V1-ATPase complexes from yeast expressing H-NT are partially inhibited, exhibiting 26% the MgATPase activity of complexes with no H subunit. The H-CT domain does not copurify with V1 when expressed in yeast, but the bacterially expressed and purified H-CT domain inhibits MgATPase activity in V1 lacking H almost as well as the full-length H subunit. Binding of full-length H subunit to V1 was more stable than binding of either H-NT or H-CT, suggesting that both domains contribute to binding and inhibition. Intact H and H-CT can bind to the expressed N-terminal domain of Vph1p, but this fragment of Vph1p does not bind to V1 complexes containing subunit H. We propose that upon disassembly, the H subunit undergoes a conformational change that inhibits V1-ATPase activity and precludes V0 interactions.V-ATPases are ubiquitous proton pumps responsible for compartment acidification in all eukaryotic cells (1, 2). These pumps couple hydrolysis of cytosolic ATP to proton transport into the lysosome/vacuole, endosomes, Golgi apparatus, clathrin-coated vesicles, and synaptic vesicles. Through their role in organelle acidification, V-ATPases are linked to cellular functions as diverse as protein sorting and targeting, zymogen activation, cytosolic pH homeostasis, and resistance to multiple types of stress (3). They are also recruited to the plasma membrane of certain cells, where they catalyze proton export (4, 5).V-ATPases are evolutionarily related to ATP synthases of bacteria and mitochondria and consist of two multisubunit complexes, V1 and V0, which contain the sites for ATP hydrolysis and proton transport, respectively. Like the ATP synthase (F-ATPase), V-ATPases utilize a rotational catalytic mechanism. ATP binding and hydrolysis in the three catalytic subunits of the V1 sector generate sequential conformational changes that drive rotation of a central stalk (68). The central stalk subunits are connected to a ring of proteolipid subunits in the V0 sector that bind protons to be transported. The actual transport is believed to occur at the interface of the proteolipids and V0 subunit a. Rotational catalysis will be productive in proton transport only if V0 subunit a is held stationary, whereas the proteolipid ring rotates (8). This “stator function” resides in a single peripheral stalk in F-ATPases (9, 10), but is distributed among up to three peripheral stalks in V-ATPases (1113). The peripheral stator stalks link V0 subunit a to the catalytic headgroup and ensures that there is rotation of the central stalk complex relative to the V0 a subunit and catalytic headgroup.Eukaryotic V-ATPases are highly conserved in both their overall structure and the sequences of individual subunits. Although homologs of most subunits of eukaryotic V-ATPases are present in archaebacterial V-ATPases (also known as A-ATPases), the C and H subunits are unique to eukaryotes. Both subunits have been localized at the interface of the V1 and V0 sectors, suggesting that they are positioned to play a critical role in structural and functional interaction between the two sectors (1416). The yeast C and H subunits are the only eukaryotic V-ATPase subunits for which x-ray crystal structures are available (17, 18). The structure of the C subunit revealed an elongated “dumbbell-shaped” molecule, with foot, head, and neck domains (18). The structure of the H subunit indicated two domains. The N-terminal 348 amino acids fold into a series of HEAT repeats and are connected by a 4-amino acid linker to a C-terminal domain containing amino acids 352–478 (17). These two domains have partially separable functions in the context of the assembled V-ATPase (19). Complexes containing only the N-terminal domain of the H subunit (H-NT)2 supported some ATP hydrolysis but little or no proton pumping in isolated vacuolar vesicles (19, 20). The C-terminal domain (H-CT) assembled with the rest of the V-ATPase in the absence of intact subunit H, but supported neither ATPase nor proton pumping activity (19). However, co-expression of the H-NT and H-CT domains results in assembly of both sectors with the V-ATPase and allows increased ATP-driven proton pumping in isolated vacuolar vesicles. These results suggest that the H-NT and H-CT domains play distinct and complementary roles even when the two domains are not covalently attached.In addition to their role as dedicated proton pumps, eukaryotic V-ATPases are also distinguished from F-ATPases and archaeal V-ATPases in their regulation. Eukaryotic V-ATPases are regulated in part by reversible disassembly of the V1 complex from the V0 complex (1, 21, 22). In yeast, disassembly of previously assembled complexes occurs in response to glucose deprivation, and reassembly is rapidly induced by glucose readdition to glucose-deprived cells. Disassembly down-regulates pump activity, and both the disassembled sectors are inactivated. Inhibition of ATP hydrolysis in free V1 sectors is particularly critical, because release of an active ATPase into the cytosol could deplete cytosolic ATP stores. This inhibition is dependent in part on the H subunit. V1 complexes isolated from vma13Δ mutants, which lack the H subunit gene (V1(-H) complexes) have MgATPase activity. Consistent with a physiological role for H subunit inhibition of V1, heterozygous diploids containing elevated levels of free V1 complexes without subunit H have severe growth defects (23). V1 complexes containing subunit H have no MgATPase activity, but retain some CaATPase activity, suggesting a role for nucleotides in inhibition (24, 25). Consistent with such a role, both the CaATPase activity of native V1 and the MgATPase activity of V1(-H) complexes are lost within a few minutes of nucleotide addition (24).A number of points of interaction between the H subunit and the V1 and V0 complexes have been identified through two-hybrid assays, binding of expressed proteins, and cross-linking experiments. These experiments have indicated that the H subunit binds to V1 subunits E and G of the V-ATPase peripheral stalks (26, 27), the catalytic subunit (V1 subunit A) (28), regulatory V1 subunit B (15), and the N-terminal domain of subunit a (28). Recently, Jeffries and Forgac (29) have found that cysteines introduced into the C-terminal domain of subunit H can be cross-linked to subunit F in isolated V1 sectors via a 10-Å cross-linking reagent.In this work, we examine both the subunit-subunit interactions and functional roles of the H-NT and H-CT domains in inhibition of V1-ATPase activity. When expressed in yeast cells lacking subunit H, H-NT can be isolated with cytosolic V1 complexes, but H-CT cannot. We find that both of these domains contribute to inhibition of ATPase activity, but that stable binding to V1 and full inhibition of activity requires both domains. We also find that the H-CT can bind to the cytosolic N-terminal domain of V0 subunit Vph1p (Vph1-NT) in isolation, but does not support tight binding of Vph1-NT to isolated V1 complexes.  相似文献   
35.
Recent genome-wide association studies report that the SNP rs8099917, located 8.9 kb upstream of the start codon of IL28B, is associated with both disease chronicity and therapeutic response to pegIFN-α and RBV in patients infected with genotype 1 HCV. To determine the effect of rs8099917 variation on the response of HCV to therapy, we genotyped this variant in a cohort of 160 HCV/HIV-1 coinfected patients in our clinic unit who received combined peg-IFN-α/RBV therapy. The rs8099917 T/G or G/G genotypes were observed in 56 patients (35%). Treatment failure occurred in 80% of G-allele carriers versus 48% of non-carriers (P<0.0001). This result reveals that the G allele was strongly associated with treatment failure in this patient cohort. Importantly, a highly significant association was found between the G-allele and response to therapy in HCV genotype 1-infected patients (P<0.0001) but not in HCV genotype 3-infected patients. Multivariate analysis (odds ratio; 95% confidence interval; P value) indicated that the rs8099917 TT genotype was a strong predictor of treatment success (5.83; 1.26-26.92; P = 0.021), independent of baseline plasma HCV-RNA load less than 500 000 IU/ml (4.85; 1.18-19.95; P = 0.025) and absence of advanced liver fibrosis (5.24; 1.20-22.91; P = 0.025). These results reveal the high prevalence of the rs8099917 G allele in HCV/HIV-1 coinfected patients as well as its strong association with treatment failure in HCV genotype 1-infected patients. rs8099917 SNP genotyping may be a valid pre-treatment predictor of which patients are likely to respond to treatment in this group of difficult-to-treat HCV/HIV-infected patients.  相似文献   
36.
37.
38.
Streptomyces davawensis is the only organism known to synthesize the antibiotic roseoflavin, a riboflavin (vitamin B(2)) analog. Roseoflavin is converted to roseoflavin mononucleotide (RoFMN) and roseoflavin adenine dinucleotide in the cytoplasm of target cells. (Ribo-)Flavin mononucleotide (FMN) riboswitches are genetic elements, which in many bacteria control genes responsible for the biosynthesis and transport of riboflavin. Streptomyces davawensis is roseoflavin resistant, and the closely related bacterium Streptomyces coelicolor is roseoflavin sensitive. The two bacteria served as models to investigate roseoflavin resistance of S. davawensis and to analyze the mode of action of roseoflavin in S. coelicolor. Our experiments demonstrate that the ribB FMN riboswitch of S. davawensis (in contrast to the corresponding riboswitch of S. coelicolor) is able to discriminate between the two very similar flavins FMN and RoFMN and shows opposite responses to the latter ligands.  相似文献   
39.
Elevated intraocular pressure (IOP) is the predominant risk factor for glaucoma, and reducing IOP is the only successful strategy to prevent further glaucomatous vision loss. IOP is determined by the balance between the rates of aqueous humour secretion and outflow, and a pathological reduction in the hydraulic conductance of outflow, known as outflow facility, is responsible for IOP elevation in glaucoma. Mouse models are often used to investigate the mechanisms controlling outflow facility, but the diminutive size of the mouse eye makes measurement of outflow technically challenging. In this study, we present a new approach to measure and analyse outflow facility using iPerfusion, which incorporates an actuated pressure reservoir, thermal flow sensor, differential pressure measurement and an automated computerised interface. In enucleated eyes from C57BL/6J mice, the flow-pressure relationship is highly non-linear and is well represented by an empirical power law model that describes the pressure dependence of outflow facility. At zero pressure, the measured flow is indistinguishable from zero, confirming the absence of any significant pressure independent flow in enucleated eyes. Comparison with the commonly used 2-parameter linear outflow model reveals that inappropriate application of a linear fit to a non-linear flow-pressure relationship introduces considerable errors in the estimation of outflow facility and leads to the false impression of pressure-independent outflow. Data from a population of enucleated eyes from C57BL/6J mice show that outflow facility is best described by a lognormal distribution, with 6-fold variability between individuals, but with relatively tight correlation of facility between fellow eyes. iPerfusion represents a platform technology to accurately and robustly characterise the flow-pressure relationship in enucleated mouse eyes for the purpose of glaucoma research and with minor modifications, may be applied in vivo to mice, as well as to eyes from other species or different biofluidic systems.  相似文献   
40.
The inflammatory cytokine interferon-gamma (IFNγ) is crucial for immunity against intracellular pathogens such as the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease (CD). IFNγ is a pleiotropic cytokine which regulates activation of immune and non-immune cells; however, the effect of IFNγ in the central nervous system (CNS) and astrocytes during CD is unknown. Here we show that parasite persists in the CNS of C3H/He mice chronically infected with the Colombian T. cruzi strain despite the increased expression of IFNγ mRNA. Furthermore, most of the T. cruzi-bearing cells were astrocytes located near IFNγ+ cells. Surprisingly, in vitro experiments revealed that pretreatment with IFNγ promoted the infection of astrocytes by T. cruzi increasing uptake and proliferation of intracellular forms, despite inducing increased production of nitric oxide (NO). Importantly, the effect of IFNγ on T. cruzi uptake and growth is completely blocked by the anti-tumor necrosis factor (TNF) antibody Infliximab and partially blocked by the inhibitor of nitric oxide synthesis L-NAME. These data support that IFNγ fuels astrocyte infection by T. cruzi and critically implicate IFNγ-stimulated T. cruzi-infected astrocytes as sources of TNF and NO, which may contribute to parasite persistence and CNS pathology in CD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号