首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   968篇
  免费   80篇
  2023年   4篇
  2022年   11篇
  2021年   23篇
  2020年   11篇
  2019年   22篇
  2018年   24篇
  2017年   23篇
  2016年   36篇
  2015年   56篇
  2014年   69篇
  2013年   72篇
  2012年   91篇
  2011年   83篇
  2010年   66篇
  2009年   61篇
  2008年   49篇
  2007年   55篇
  2006年   55篇
  2005年   34篇
  2004年   34篇
  2003年   35篇
  2002年   43篇
  2001年   8篇
  2000年   9篇
  1999年   12篇
  1998年   4篇
  1997年   5篇
  1996年   4篇
  1995年   4篇
  1994年   4篇
  1993年   7篇
  1992年   1篇
  1991年   5篇
  1990年   6篇
  1989年   1篇
  1988年   2篇
  1987年   3篇
  1985年   1篇
  1982年   2篇
  1981年   3篇
  1980年   2篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1968年   1篇
  1965年   1篇
排序方式: 共有1048条查询结果,搜索用时 15 毫秒
991.
In the context of HIV-integrase, dihydroxypyrimidine and N-methyl pyrimidone inhibitors the cellular activity of this class of compounds has been optimized by the introduction of a simple methyl substituent in the α-position of the C-2 side chains. Enhanced passive membrane permeability has been identified as the key factor driving the observed cell-based activity improvement. The rat PK profile of the α-methyl derivative 26a was also improved over its des-methyl exact analog.  相似文献   
992.
The intracellular protozoan Toxoplasma gondii is among the most widespread parasites. The broad host cell range of the parasite can be explained by carbohydrate microarray screening analyses that have demonstrated the ability of the T. gondii adhesive protein, TgMIC1, to bind to a wide spectrum of sialyl oligosaccharide ligands. Here, we investigate by further microarray analyses in a dose-response format the differential binding of TgMIC1 to 2-3- and 2-6-linked sialyl carbohydrates. Interestingly, two novel synthetic fluorinated analogs of 3′SiaLacNAc1–4 and 3′SiaLacNAc1–3 were identified as highly potent ligands. To understand the structural basis of the carbohydrate binding specificity of TgMIC1, we have determined the crystal structures of TgMIC1 micronemal adhesive repeat (MAR)-region (TgMIC1-MARR) in complex with five sialyl-N-acetyllactosamine analogs. These crystal structures have revealed a specific, water-mediated hydrogen bond network that accounts for the preferential binding of TgMIC1-MARR to arrayed 2-3-linked sialyl oligosaccharides and the high potency of the fluorinated analogs. Furthermore, we provide strong evidence for the first observation of a C—F···H—O hydrogen bond within a lectin-carbohydrate complex. Finally, detailed comparison with other oligosaccharide-protein complexes in the Protein Data Bank (PDB) reveals a new family of sialic-acid binding sites from lectins in parasites, bacteria, and viruses.  相似文献   
993.
The anti-proliferative activity of hesperetin, hesperidin, neohesperidin and rutin was evaluated on human hepatoma cell lines (Hep G2) and correlated to their antioxidant activity. The results obtained showed strong anti-proliferative effects of hesperidin and neohesperidin, considerably higher than the other two additives. Hesperetin induced caspase-3 activation, release of LDH and endogenous accumulation of putrescine. Cell cycle distribution seems to indicate that the inhibitory effects of polyphenols on cell growth could be due to G0/G1 block, and activation of apoptotic pathway in the presence of hesperetin. Our results underline also that the glycone forms show reduced scavenging activity against DPPH, but present a remarkable inhibition of cell proliferation and low cytotoxicity.  相似文献   
994.
Complex I (CI) is the largest enzyme of the mammalian mitochondrial respiratory chain. The biogenesis of the complex is a very complex process due to its large size and number of subunits (45 subunits). The situation is further complicated due to the fact that its subunits have a double genomic origin, as seven of them are encoded by the mitochondrial DNA. Understanding of the assembly process and characterization of the involved factors has advanced very much in the last years. However, until now, a key part of the process, that is, how and at which step the mitochondrially encoded CI subunits (ND subunits) are incorporated in the CI assembly process, was not known. Analyses of several mouse cell lines mutated for three ND subunits allowed us to determine the importance of each one for complex assembly/stability and that there are five different steps within the assembly pathway in which some mitochondrially encoded CI subunit is incorporated.Complex I (CI) (NADH-ubiquinone oxidoreductase; EC 1.6.5.3) is one of the main electron entry points in the mitochondrial respiratory electron transport chain catalyzing the oxidation of NADH to reduce ubiquinone to ubiquinol (31, 39, 40), contributing to the proton motive force to synthesize ATP by the process called oxidative phosphorylation (OXPHOS).CI assembly is a difficult problem to address due to the large size of the complex and its dual genomic nature, as 7 out of its 45 subunits are encoded by the mitochondrial DNA (mtDNA) (10, 11). Until very recently, mammalian CI assembly was explained using two different and apparently contradictory models. One model was proposed by following the time course of formation of CI intermediates in human cells in culture once mitochondrial protein synthesis had recovered after its inhibition by doxycycline (36). Based on these observations, human CI was proposed to be assembled through two different modules corresponding to the membrane and peripheral arms. The other model was proposed after analysis of a cohort of four CI-deficient patients in which seven putative assembly intermediates containing a combination of both peripheral- and membrane arm subunits were identified. Thus, an assembly pathway in which the peripheral- and membrane arm subassemblies came together before the completion of each of the arms was proposed (4). However, the most recent studies have refined the previous models and propose an overlapping view of the process. One study, by green fluorescent protein (GFP) tagging of the NDUFS3 subunit, identified six peripheral-arm intermediates. The second and third smaller NDUFS3-containing subassemblies were accumulated and could not advance into higher-molecular-mass species when mitochondrial protein synthesis was inhibited, thus determining the entry point of the mitochondrially encoded subunits in the CI assembly pathway (37). The most recent study analyzed the incorporation of the mitochondrial subunits in a time course to the fully assembled CI and, on the other hand, the incorporation of the nuclear subunits by importing them into isolated mitochondria (24). Although these two models differ in the order in which some subunits are incorporated, they agree on the general human CI assembly pathway, which takes place via evolutionarily conserved modular subassemblies (14, 25, 28, 37).However, the specific entry points of all the mtDNA-encoded CI subunits (ND subunits) in the CI assembly pathway and their roles in the stability of the complex remained to be clarified. Structural studies related to mutations in the ND subunits in pathological cases have given some hints as to the importance of each of them for CI assembly/stability. In this case, defects in specific ND subunits do not have the same effect: ND1, ND4, and ND6 seem to be fundamental to CI assembly, while ND3 and ND5 are important for its activity but not for assembly. On the other hand, mutations in ND2 alter CI assembly, with abnormal intermediate accumulation (19).In this article, we present new insights into the roles of the ND subunits by using mouse cells deficient for ND4, ND6, and a combination of ND6 and ND5. This study has allowed us to propose the five different entry points by which the mtDNA-encoded subunits are sequentially incorporated into the CI assembly pathway, completing the current view of the process. We conclude that ND4 and ND6 are required for the proper function and assembly of CI, although at different degrees due to their different entry points and roles in the CI assembly pathway.  相似文献   
995.
Linalool production was evaluated in different Saccharomyces cerevisiae strains expressing the Clarkia breweri linalool synthase gene (LIS). The wine strain T73 was shown to produce higher levels of linalool than conventional laboratory strains (i.e., almost three times the amount). The performance of this strain was further enhanced by manipulating the endogenous mevalonate (MVA) pathway: deregulated overexpression of the rate-limiting 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase) doubled linalool production. In a haploid laboratory strain, engineering of this key step also improved linalool yield.Monoterpenes are a class of isoprenoids of increasing industrial and clinical interest usually produced by plants. They are used as aromatic additives in the food and cosmetics industries and are also important components in wine aroma. Moreover, certain monoterpenes display antimicrobial, antiparasitic, and antiviral properties as well as a plethora of promising health benefits (for recent reviews, see references 2, 7, 15, 28, and 30 and references cited therein). To date, many studies have focused on plant metabolic engineering of monoterpene production (for selected reviews, see references 1, 14, 19, 29, and 35 and references cited therein), and few studies have been carried out on microorganisms (9, 21, 22, 34, 38). Efficient microbial production of these metabolites could provide an alternative to the current methods of chemical synthesis or extraction from natural sources. In this regard, a considerable number of studies have shown the utility of Saccharomyces cerevisiae as a valuable platform for sesquiterpene, diterpene, triterpene, and carotene production (references 5, 10, 23, 26, 30, 31, 32, and 33 and references cited therein). However, all the efforts dedicated to the improvement of isoprenoid yields in S. cerevisiae have been performed using conventional laboratory strains, and there are no studies concerning natural or industrially relevant isolates.In recent years, many genes that encode plant monoterpene synthases (MTS), a family of enzymes which specifically catalyze the conversion of the ubiquitous C10 intermediate of isoprenoid biosynthesis geranyl pyrophosphate (GPP) to monoterpenes, have been characterized. Such is the case with the LIS gene (codes for S-linalool synthase) of Clarkia breweri, the first MTS-encoding gene to be isolated (13). In contrast to plants, S. cerevisiae cannot produce monoterpenes efficiently, mainly due to the lack of specific pathways involving MTS. However, GPP is formed as a transitory intermediate in the two-step synthesis of farnesyl pyrophosphate (FPP), catalyzed by FPP synthase (FPPS) (Fig. (Fig.1),1), and some natural S. cerevisiae strains have been shown to possess the ability to produce small amounts of monoterpenes (8). Whether this occurs through unspecific dephosphorylation of a more available endogenous pool of GPP and subsequent bioconversions is not known. In addition, it has recently been established that S. cerevisiae has enough free GPP to be used by exogenous monoterpene synthases to produce monoterpenes under laboratory and vinification conditions (22, 34).Open in a separate windowFIG. 1.Simplified isoprenoid pathway in S. cerevisiae, including the branch point to linalool. Dotted arrows indicate that more than one reaction is required to convert the substrate to the product indicated. Dashed arrows indicate the engineered steps. Abbreviations: HMG-CoA, 3-hydroxy-3-methylglutaryl coenzyme A; IPP, isopentenyl pyrophosphate; GPP, geranyl pyrophosphate; FPP, farnesyl pyrophosphate; DMAPP, dimethylallyl pyrophosphate; HMGR, HMG-CoA reductase; FPPS, FPP synthase; LIS, linalool synthase.Here we present the process for selecting and optimizing yeast strains for foreign monoterpene production. We have chosen the C. breweri LIS gene as a prototype because, when heterologously expressed in S. cerevisiae, it specifically results in the production of linalool (3,7-dimethyl-1,6-octadien-3-ol; a floral scent and bioactive acyclic monoterpene identified in numerous fruits and flowers) and no other by-products (22). Two S. cerevisiae strains of different origins have been selected and their endogenous mevalonate (MVA) pathways engineered to enhance the production of linalool. These strategies might be employed to produce any other recombinant monoterpene in S. cerevisiae by expressing the appropriate monoterpene synthase.  相似文献   
996.
During our experimental work, aggregation of bovine serum albumin was obtained incubating the protein solution at 60 °C to investigate temperature-induced secondary structure, conformation changes and anti-aggregative activity of trehalose. IR-measurements suggested that in the presence of 1.0 M of trehalose there is a little increase in short segment connecting ?α-helical and a clearly decrease in the loss of ?α-helix structure and in the formation of intermolecular and antiparellel β-sheet up to 78 and 55%, respectively. Useful information also arose following the temperature evolution of Amide I′ band profile in the range of temperature between 25 and 90 °C in absence or in presence of 1.0 M trehalose. Complementary information is obtained by electrophoresis, circular dichroism, fluorescence spectroscopy, titration of SH groups and light scattering measurements. Results encouraged biotechnology and pharmaceutical application of the disaccharide and provided evidence for its utilization in degenerative diseases evolving via aggregation process.  相似文献   
997.
Bovine leukemia is a common retroviral infection of cattle. The disease is characterized by a strong immunological response to several viral proteins, but the antibodies against p24 and gp51 are predominant. In this study, a recombinant baculovirus containing the gag gene p24 was constructed and the protein, used as antigen, analyzed by western blot and an indirect in-house rp24-ELISA test. This allowed detecting the presence of antibodies for bovine leukemia virus in a panel of cattle sera. The authentication of the protein expands its potential use for different medical applications, from improved diagnosis of the disease to source of antigens to be included in a subunit vaccine.  相似文献   
998.
Most B cell lymphomas originate from B cells that have germinal center (GC) experience and bear chromosome translocations and numerous point mutations. GC B cells remodel their immunoglobulin (Ig) genes by somatic hypermutation (SHM) and class switch recombination (CSR) in their Ig genes. Activation Induced Deaminase (AID) initiates CSR and SHM by generating U:G mismatches on Ig DNA that can then be processed by Uracyl-N-glycosylase (UNG). AID promotes collateral damage in the form of chromosome translocations and off-target SHM, however, the exact contribution of AID activity to lymphoma generation and progression is not completely understood. Here we show using a conditional knock-in strategy that AID supra-activity alone is not sufficient to generate B cell transformation. In contrast, in the absence of UNG, AID supra-expression increases SHM and promotes lymphoma. Whole exome sequencing revealed that AID heavily contributes to lymphoma SHM, promoting subclonal variability and a wider range of oncogenic variants. Thus, our data provide direct evidence that UNG is a brake to AID-induced intratumoral heterogeneity and evolution of B cell lymphoma.  相似文献   
999.
1000.
Spondylometaphyseal dysplasia with cone-rod dystrophy is a rare autosomal-recessive disorder characterized by severe short stature, progressive lower-limb bowing, flattened vertebral bodies, metaphyseal involvement, and visual impairment caused by cone-rod dystrophy. Whole-exome sequencing of four individuals affected by this disorder from two Brazilian families identified two previously unreported homozygous mutations in PCYT1A. This gene encodes the alpha isoform of the phosphate cytidylyltransferase 1 choline enzyme, which is responsible for converting phosphocholine into cytidine diphosphate-choline, a key intermediate step in the phosphatidylcholine biosynthesis pathway. A different enzymatic defect in this pathway has been previously associated with a muscular dystrophy with mitochondrial structural abnormalities that does not have cartilage and/or bone or retinal involvement. Thus, the deregulation of the phosphatidylcholine pathway may play a role in multiple genetic diseases in humans, and further studies are necessary to uncover its precise pathogenic mechanisms and the entirety of its phenotypic spectrum.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号