首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   818篇
  免费   64篇
  882篇
  2023年   5篇
  2022年   9篇
  2021年   15篇
  2020年   9篇
  2019年   16篇
  2018年   18篇
  2017年   15篇
  2016年   33篇
  2015年   46篇
  2014年   55篇
  2013年   56篇
  2012年   79篇
  2011年   71篇
  2010年   61篇
  2009年   53篇
  2008年   42篇
  2007年   48篇
  2006年   50篇
  2005年   32篇
  2004年   28篇
  2003年   28篇
  2002年   38篇
  2001年   7篇
  2000年   5篇
  1999年   10篇
  1998年   3篇
  1997年   5篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1993年   5篇
  1992年   1篇
  1991年   4篇
  1990年   6篇
  1989年   1篇
  1988年   2篇
  1987年   3篇
  1985年   1篇
  1982年   2篇
  1981年   3篇
  1980年   2篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1968年   1篇
  1965年   1篇
排序方式: 共有882条查询结果,搜索用时 0 毫秒
51.
Plaque-to-plaque transfers of RNA viruses lead to accumulation of mutations and fitness decrease. To test whether continuing plaque-to-plaque transfers would lead to viral extinction, we have subjected several low fitness foot-and-mouth disease virus (FMDV) clones to up to 130 successive plaque transfers, and have analyzed the evolution of plaque titers and genomic nucleotide sequences. No case of viral extinction could be documented. Some low fitness clones that posses an internal poly(A) tract evaded extinction by modifying the length or base composition of the poly(A) tract. The comparison of entire genomic sequences of FMDV clones at increasing plaque transfer number revealed that mutations accumulated at a uniform rate, and that they were distributed unevenly along the genome. Clusters of mutations were identified at different genomic sites in two plaque transfer lineages. Mutation clustering appears to occur stochastically and could not be related to fixation of compensatory mutations. The results document resistance of viral clones to extinction, and suggest that mutation clustering may be a mechanism of genetic diversification of low fitness virus.  相似文献   
52.
Abstract

This study evaluated the antibacterial activity of terpinen-4-ol against Streptococcus mutans and Lactobacillus acidophilus and its influence on gbpA (S. mutans) and slpA (L. acidophilus) gene expression. As measured by XTT assay, the concentrations of terpinen-4-ol that effectively inhibited the biofilm were 0.24% and 0.95% for S. mutans and L. acidophilus, respectively. Confocal microscopy revealed the presence of a biofilm attached to the enamel and dentin block surfaces with significant terpinen-4-ol effects against these microorganisms. The expression of the gbpA and slpA genes involved in adherence and biofilm formation was investigated using RT-PCR. Expression of these genes decreased after 15?min with 0.24% and 0.95% terpinen-4-ol in S. mutans and L. acidophilus, respectively. These findings demonstrate the antimicrobial activity of terpinen-4-ol and its ability to modulate the expression of gbpA and slpA genes, emphasizing the therapeutic capacity of terpinen-4-ol as an alternative to inhibit adherence in biofilm.  相似文献   
53.
54.
55.
Palytoxin (PTX) is classified as one of the most powerful marine biotoxins (of high molecular weight and no protein origin) because it is able to interact strongly with important cellular structures influencing their function in different biological processes. This study of the effects of PTX on red blood cells (RBC) extends the knowledge about its toxicity, which concerns not only the well-known action on Na(+)/K(+)-ATPase but also band 3 protein (B3 or AE1), the role of which is essential for anion transport and for the structure, function, and metabolic integrity of the erythrocyte. The effects of PTX on RBC can be summarized as follows: it alters the anionic flux and seriously compromises not only CO(2) transport but also the metabolic modulation centered on the oxy-deoxy cycle of hemoglobin; it stabilizes the plasma membrane by preventing lipid peroxidation; and its effect does not lead to activation of caspases 3 and 8. From what is reported in steps 2 and 3, and on the basis of the results obtained on hemolysis, methemoglobin levels, and phosphatase activity, an increase of the reducing power of the erythrocytes (RBC) in the presence of PTX clearly emerges. The results have enabled us to outline some metabolic adaptations induced in the RBC by PTX.  相似文献   
56.
Intrauterine growth restriction (IUGR) is an obstetric complication characterised by placental insufficiency and secondary cardiovascular remodelling that can lead to cardiomyopathy in adulthood. Despite its aetiology and potential therapeutics are poorly understood, bioenergetic deficits have been demonstrated in adverse foetal and cardiac development. We aimed to evaluate the role of mitochondria in human pregnancies with IUGR. In a single‐site, cross‐sectional and observational study, we included placenta and maternal peripheral and neonatal cord blood mononuclear cells (PBMC and CBMC) from 14 IUGR and 22 control pregnancies. The following mitochondrial measurements were assessed: enzymatic activities of mitochondrial respiratory chain (MRC) complexes I, II, IV, I + III and II + III, oxygen consumption (cell and complex I‐stimulated respiration), mitochondrial content (citrate synthase [CS] activity and mitochondrial DNA copy number), total ATP levels and lipid peroxidation. Sirtuin3 expression was evaluated as a potential regulator of bioenergetic imbalance. Intrauterine growth restriction placental tissue showed a significant decrease of MRC CI enzymatic activity (P < 0.05) and CI‐stimulated oxygen consumption (P < 0.05) accompanied by a significant increase of Sirtuin3/β‐actin protein levels (P < 0.05). Maternal PBMC and neonatal CBMC from IUGR patients presented a not significant decrease in oxygen consumption (cell and CI‐stimulated respiration) and MRC enzymatic activities (CII and CIV). Moreover, CS activity was significantly reduced in IUGR new‐borns (P < 0.05). Total ATP levels and lipid peroxidation were preserved in all the studied tissues. Altered mitochondrial function of IUGR is especially present at placental and neonatal level, conveying potential targets to modulate obstetric outcome through dietary interventions aimed to regulate Sirtuin3 function.  相似文献   
57.
Invasive species can affect the function and structure of natural ecological communities, hence understanding and predicting their potential for spreading is a major ecological challenge. Once established in a new region, the spread of invasive species is largely controlled by their dispersal capacity, local environmental conditions and species interactions. The mussel Mytilus galloprovincialis is native to the Mediterranean and is the most successful marine invader in southern Africa. Its distribution there has expanded rapidly and extensively since the 1970s, however, over the last decade its spread has ceased. In this study, we coupled broad scale field surveys, Ecological Niche Modelling (ENM) and Lagrangian Particle Simulations (LPS) to assess the current invaded distribution of M. galloprovincialis in southern Africa and to evaluate what prevents further spread of this species. Results showed that all environmentally suitable habitats in southern Africa have been occupied by the species. This includes rocky shores between Rocky Point in Namibia and East London in South Africa (approx. 2800 km) and these limits coincide with the steep transitions between cool-temperate and subtropical-warmer climates, on both west and southeast African coasts. On the west coast, simulations of drifting larvae almost entirely followed the northward and offshore direction of the Benguela current, creating a clear dispersal barrier by advecting larvae away from the coast. On the southeast coast, nearshore currents give larvae the potential to move eastwards, against the prevalent Agulhas current and beyond the present distributional limit, however environmental conditions prevent the establishment of the species. The transition between the cooler and warmer water regimes is therefore the main factor limiting the northern spread on the southeast coast; however, biotic interactions with native fauna may also play an important role.  相似文献   
58.
Developmental genes are silenced in embryonic stem cells by a bivalent histone-based chromatin mark. It has been proposed that this mark also confers a predisposition to aberrant DNA promoter hypermethylation of tumor suppressor genes (TSGs) in cancer. We report here that silencing of a significant proportion of these TSGs in human embryonic and adult stem cells is associated with promoter DNA hypermethylation. Our results indicate a role for DNA methylation in the control of gene expression in human stem cells and suggest that, for genes repressed by promoter hypermethylation in stem cells in vivo, the aberrant process in cancer could be understood as a defect in establishing an unmethylated promoter during differentiation, rather than as an anomalous process of de novo hypermethylation.  相似文献   
59.

Background  

Gene expression data can be analyzed by summarizing groups of individual gene expression profiles based on GO annotation information. The mean expression profile per group can then be used to identify interesting GO categories in relation to the experimental settings. However, the expression profiles present in GO classes are often heterogeneous, i.e., there are several different expression profiles within one class. As a result, important experimental findings can be obscured because the summarizing profile does not seem to be of interest. We propose to tackle this problem by finding homogeneous subclasses within GO categories: preclustering.  相似文献   
60.
The eosinophil cationic protein (ECP) is a human antimicrobial protein involved in the host immune defense that belongs to the pancreatic RNase A family. ECP displays a wide range of antipathogen activities. The protein is highly cationic and its bactericidal activity is dependant on both cationic and hydrophobic surface exposed residues. Previous studies on ECP by site-directed mutagenesis indicated that the RNase activity is not essential for its bactericidal activity. To further understand the ECP bactericidal mechanism, we have applied enzymatic and chemical limited cleavage to search for active sequence determinants.Following a search for potential peptidases we selected the Lys-endoproteinase, which cleaves the ECP polypeptide at the carboxyl side of its unique Lys residue, releasing the N-terminal fragment (0-38).Chemical digestion using cyanogen bromide released several complementary peptides at the protein N-terminus. Interestingly, ECP treatment with cyanogen bromide represents a new example of selective chemical cleavage at the carboxyl side of not only Met but also Trp residues. Recombinant ECP was denatured and carboxyamidomethylated prior to enzymatic and chemical cleavage. Irreversible denaturation abolishes the protein bactericidal activity.The characterization of the digestion products by both enzymatic and chemical approaches identifies a region at the protein N-terminus, from residues 11 to 35, that retains the bactericidal activity. The most active fragment, ECP(0-38), is further compared to ECP derived synthetic peptides. The region includes previously identified stretches related to lipopolysaccharide binding and bacteria agglutination. The results contribute to define the shortest ECP minimized version that would retain its antimicrobial properties. The data suggest that the antimicrobial RNase can provide a scaffold for the selective release of cytotoxic peptides.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号