首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   764篇
  免费   67篇
  831篇
  2023年   3篇
  2022年   16篇
  2021年   12篇
  2020年   12篇
  2019年   15篇
  2018年   16篇
  2017年   9篇
  2016年   18篇
  2015年   33篇
  2014年   44篇
  2013年   54篇
  2012年   62篇
  2011年   69篇
  2010年   36篇
  2009年   35篇
  2008年   59篇
  2007年   52篇
  2006年   37篇
  2005年   40篇
  2004年   38篇
  2003年   35篇
  2002年   27篇
  2001年   10篇
  2000年   11篇
  1999年   2篇
  1998年   11篇
  1997年   9篇
  1996年   5篇
  1995年   4篇
  1994年   7篇
  1992年   6篇
  1991年   1篇
  1990年   8篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   3篇
  1985年   2篇
  1984年   8篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1980年   3篇
  1979年   2篇
  1978年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1963年   2篇
  1953年   1篇
排序方式: 共有831条查询结果,搜索用时 62 毫秒
81.
Classical quantitative trait loci (QTL) analysis and gene expression QTL (eQTL) were combined to identify the causal gene (or QTG) underlying a highly significant QTL controlling the variation of breast meat color in a F2 cross between divergent high-growth (HG) and low-growth (LG) chicken lines. Within this meat quality QTL, BCMO1 (Accession number GenBank: AJ271386), encoding the β-carotene 15, 15'-monooxygenase, a key enzyme in the conversion of β-carotene into colorless retinal, was a good functional candidate. Analysis of the abundance of BCMO1 mRNA in breast muscle of the HG x LG F2 population allowed for the identification of a strong cis eQTL. Moreover, reevaluation of the color QTL taking BCMO1 mRNA levels as a covariate indicated that BCMO1 mRNA levels entirely explained the variations in meat color. Two fully-linked single nucleotide polymorphisms (SNP) located within the proximal promoter of BCMO1 gene were identified. Haplotype substitution resulted in a marked difference in BCMO1 promoter activity in vitro. The association study in the F2 population revealed a three-fold difference in BCMO1 expression leading to a difference of 1 standard deviation in yellow color between the homozygous birds at this haplotype. This difference in meat yellow color was fully consistent with the difference in carotenoid content (i.e. lutein and zeaxanthin) evidenced between the two alternative haplotypes. A significant association between the haplotype, the level of BCMO1 expression and the yellow color of the meat was also recovered in an unrelated commercial broiler population. The mutation could be of economic importance for poultry production by making possible a gene-assisted selection for color, a determining aspect of meat quality. Moreover, this natural genetic diversity constitutes a new model for the study of β-carotene metabolism which may act upon diverse biological processes as precursor of the vitamin A.  相似文献   
82.
Classical quantitative trait loci (QTL) analysis and gene expression QTL (eQTL) were combined to identify the causal gene (or QTG) underlying a highly significant QTL controlling the variation of breast meat color in a F2 cross between divergent high-growth (HG) and low-growth (LG) chicken lines. Within this meat quality QTL, BCMO1 (Accession number GenBank: AJ271386), encoding the β-carotene 15, 15′-monooxygenase, a key enzyme in the conversion of β-carotene into colorless retinal, was a good functional candidate. Analysis of the abundance of BCMO1 mRNA in breast muscle of the HG x LG F2 population allowed for the identification of a strong cis eQTL. Moreover, reevaluation of the color QTL taking BCMO1 mRNA levels as a covariate indicated that BCMO1 mRNA levels entirely explained the variations in meat color. Two fully-linked single nucleotide polymorphisms (SNP) located within the proximal promoter of BCMO1 gene were identified. Haplotype substitution resulted in a marked difference in BCMO1 promoter activity in vitro. The association study in the F2 population revealed a three-fold difference in BCMO1 expression leading to a difference of 1 standard deviation in yellow color between the homozygous birds at this haplotype. This difference in meat yellow color was fully consistent with the difference in carotenoid content (i.e. lutein and zeaxanthin) evidenced between the two alternative haplotypes. A significant association between the haplotype, the level of BCMO1 expression and the yellow color of the meat was also recovered in an unrelated commercial broiler population. The mutation could be of economic importance for poultry production by making possible a gene-assisted selection for color, a determining aspect of meat quality. Moreover, this natural genetic diversity constitutes a new model for the study of β-carotene metabolism which may act upon diverse biological processes as precursor of the vitamin A.  相似文献   
83.
84.
Pectin methylesterases (PMEs) catalyze the demethylesterification of homogalacturonan domains of pectin in plant cell walls and are regulated by endogenous pectin methylesterase inhibitors (PMEIs). In Arabidopsis dark-grown hypocotyls, one PME (AtPME3) and one PMEI (AtPMEI7) were identified as potential interacting proteins. Using RT-quantitative PCR analysis and gene promoter::GUS fusions, we first showed that AtPME3 and AtPMEI7 genes had overlapping patterns of expression in etiolated hypocotyls. The two proteins were identified in hypocotyl cell wall extracts by proteomics. To investigate the potential interaction between AtPME3 and AtPMEI7, both proteins were expressed in a heterologous system and purified by affinity chromatography. The activity of recombinant AtPME3 was characterized on homogalacturonans (HGs) with distinct degrees/patterns of methylesterification. AtPME3 showed the highest activity at pH 7.5 on HG substrates with a degree of methylesterification between 60 and 80% and a random distribution of methyl esters. On the best HG substrate, AtPME3 generates long non-methylesterified stretches and leaves short highly methylesterified zones, indicating that it acts as a processive enzyme. The recombinant AtPMEI7 and AtPME3 interaction reduces the level of demethylesterification of the HG substrate but does not inhibit the processivity of the enzyme. These data suggest that the AtPME3·AtPMEI7 complex is not covalently linked and could, depending on the pH, be alternately formed and dissociated. Docking analysis indicated that the inhibition of AtPME3 could occur via the interaction of AtPMEI7 with a PME ligand-binding cleft structure. All of these data indicate that AtPME3 and AtPMEI7 could be partners involved in the fine tuning of HG methylesterification during plant development.  相似文献   
85.
Bacteria belonging to the genus Wolbachia are obligatory microendocytobionts that infect a variety of arthropods and a majority of filarial nematode species, where they induce reproductive alterations or establish a mutualistic symbiosis. Although two whole genome sequences of Wolbachia pipientis, for strain wMel from Drosophila melanogaster and strain wBm from Brugia malayi, have been fully completed and six other genome sequencing projects are ongoing (http://www.genomesonline.org/index.cgi?want=Prokaryotic+Ongoin), genetic analyses of these bacteria are still scarce, mainly due to the inability to cultivate them outside of eukaryotic cells. Usually, a large amount of host tissue (a thousand individuals, or about 10 g) is required in order to purify Wolbachia and extract its DNA, which is often recovered in small amounts and contaminated by host cell DNA, thus hindering genomic studies. In this report, we describe an efficient and reliable procedure to representatively amplify the Wolbachia genome by multiple-displacement amplification from limited infected host tissue (0.2 g or 2 x 10(7) cells). We obtained sufficient amounts (8 to 10 microg) of DNA of suitable quality for genomic studies, and we demonstrated that the amplified DNA contained all of the Wolbachia loci targeted. In addition, our data indicated that the genome of strain wRi, an obligatory endosymbiont of Drosophila simulans, shares a similar overall architecture with its relative strain wMel.  相似文献   
86.
Homogalacturonan-derived partly methylated and/or acetylated oligogalacturonates were recovered after enzymatic hydrolysis (endo-polygalacturonase+pectin methyl esterase+side-chain degrading enzymes) of sugar beet pectin followed by anion-exchange and size exclusion chromatography. Around 90% of the GalA and 75% of the acetyl groups present in the initial sugar beet pectin were recovered as homogalacturonan-derived oligogalacturonates, the remaining GalA and acetyl belonging to rhamnogalacturonic regions. Around 50% of the acetyl groups present in sugar beet homogalacturonans were recovered as partly methylated and/or acetylated oligogalacturonates of degree of polymerisation 5 whose structures were determined by electrospray ionization ion trap mass spectrometry (ESI-IT-MSn). 2-O-acetyl- and 3-O-acetyl-GalA were detected in roughly similar amounts but 2,3-di-O-acetylation was absent. Methyl-esterified GalA residues occurred mainly upstream 2-O-acetyl GalA. Oligogalacturonates containing GalA residues that are at once methyl- and acetyl-esterified were recovered in very limited amounts. A tentative mapping of the distribution of acetyl and methyl esters within sugar beet homogalacturonans is proposed. Unsubstituted GalA residues are likely to be present in limited amounts (approximately 10% of total GalA residues), due to the fact that methyl and acetyl groups are assumed to be most often not carried by the same residues.  相似文献   
87.
The objective of our study was to compare the information obtained through the use of three different urinary biomarkers of lipoperoxidation during the time course of a bromotrichloromethane (BrCCl3) induced oxidative stress in rats. These biomarkers were malondialdehyde (MDA) measured by LC/MS after derivatization, the isoprostane 8-iso-PGF2alpha measured by enzyme immunoassay and 1,4-dihydroxynonene mercapturic acid (DHN-MA), the major 4-hydroxynonenal urinary metabolite [1], measured by LC-MS. Male Wistar rats received a single dose of 100 microL/kg BrCCl3 per os and lipid peroxidation was estimated every day for a 4-day-period after treatment. MDA, 8-iso-PGF2alpha and DHN-MA significantly increased in response to BrCCl3 treatment for this period of time, and DHN-MA showed the main increase during the 24-48 h period after treatment.  相似文献   
88.
RhoGDIs revisited: novel roles in Rho regulation   总被引:4,自引:0,他引:4  
Small GTP-binding proteins of the Rho/Rac/Cdc42 family combine their GDP/GTP cycle, regulated by guanine nucleotide-exchange factors and GTPase-activating proteins, to a cytosol/membrane cycle, regulated by guanine nucleotide dissociation inhibitors (rhoGDIs). RhoGDIs are endowed with dual functions in the cytosol where they form soluble complexes with geranylgeranylated GDP-bound Rho proteins and at membrane interfaces where they monitor the delivery and extraction of Rho proteins to/from their site of action. They have little diversity compared with other Rho protein regulators and therefore have been regarded mostly as housekeeping regulators that distribute Rho proteins equally to any membranes. Recently, acquired data show that rhoGDIs, by interacting with candidate receptors/displacement factors or by phosphorylation, may in fact have active contributions to targeting Rho proteins to specific subcellular membranes and signaling pathways. In addition, the GDP/GTP and membrane/cytosol cycles can be uncoupled in certain cases, with Rho proteins either escaping the membrane/cytosol cycle or being regulated by rhoGDIs in their GTP-bound form. Here, we survey recent structure-function relationships and cellular studies on rhoGDIs and revisit their classical housekeeping role into novel and more specific functions. We also review their involvement in diseases.  相似文献   
89.
Bacterial histidine kinases have been proposed as targets for the discovery of new antibiotics, yet few specific inhibitors of bacterial histidine kinases have been reported. We report here a novel thienopyridine (TEP) compound that inhibits bacterial histidine kinases competitively with respect to ATP but does not comparably inhibit mammalian serine/threonine kinases. Although it partitions into membranes and does not inhibit the growth of bacterial or mammalian cells, TEP could serve as a starting compound for a new class of histidine kinase inhibitors with antibacterial activity.  相似文献   
90.
Maes EM  Roberts SA  Weichsel A  Montfort WR 《Biochemistry》2005,44(38):12690-12699
Nitrophorin 4 (NP4), a nitric oxide (NO)-transport protein from the blood-sucking insect Rhodnius prolixus, uses a ferric (Fe3+) heme to deliver NO to its victims. NO binding to NP4 induces a large conformational change and complete desolvation of the distal pocket. The heme is markedly nonplanar, displaying a ruffling distortion postulated to contribute to stabilization of the ferric iron. Here, we report the ferrous (Fe2+) complexes of NP4 with NO, CO, and H2O formed after chemical reduction of the protein and the characterization of these complexes by absorption spectroscopy, flash photolysis, and ultrahigh-resolution crystallography (resolutions vary from 0.9 to 1.08 A). The absorption spectra, both in solution and in the crystal, are typical for six-coordinated ferrous complexes. Closure and desolvation of the distal pocket occurs upon binding CO or NO to the iron regardless of the heme oxidation state, confirming that the conformational change is driven by distal ligand polarity. The degree of heme ruffling is coupled to the nature of the ligand and the iron oxidation state in the following order: (Fe3+)-NO > (Fe2+)-NO > (Fe2+)-CO > (Fe3+)-H2O > (Fe2+)-H2O. The ferrous coordination geometry is as expected, except for the proximal histidine bond, which is shorter than typically found in model compounds. These data are consistent with heme ruffling and coordination geometry serving to stabilize the ferric state of the nitrophorins, a requirement for their physiological function. Possible roles for heme distortion and NO bending in heme protein function are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号