首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   9篇
  2023年   1篇
  2022年   1篇
  2021年   6篇
  2020年   1篇
  2019年   3篇
  2018年   3篇
  2017年   2篇
  2016年   7篇
  2015年   6篇
  2014年   8篇
  2013年   9篇
  2012年   7篇
  2011年   5篇
  2010年   4篇
  2008年   1篇
  2007年   2篇
  2005年   2篇
  2004年   2篇
  2002年   1篇
  2001年   1篇
  1987年   1篇
排序方式: 共有73条查询结果,搜索用时 15 毫秒
61.
Porcine circovirus type 2 (PCV2) has been identified as the essential causal agent of postweaning multisystemic wasting syndrome. However, little is known regarding the mechanism(s) underlying the pathogenesis of PCV2-induced disease and the interaction of the virus with the host immune system. Here, we present a proteomics study on inguinal lymph nodes of piglets inoculated with PCV2, in order to better understand the pathogenesis of postweaning multisystemic wasting syndrome and the pathways might be affected after infection. We used two proteomics strategies, 2-DE and 1-DE followed by (16)O/(18)O peptide labelling and peptide identification and quantification by MS. More than 100 proteins were found to be differentially regulated and the results obtained by the two strategies were fairly concordant but also complementary, the (18)O labelling approach being a more robust alternative. Analysis of these proteins by systems biology tools revealed the implication of acute phase response and NrF2-mediated oxidative stress, suggesting a putative role for these pathways in the pig immune response. Besides, CD81 was found to be up-regulated, suggesting a possible role in the internalization of the virus. The use of proteomics technologies together with biology analysis systems opens up the way to gain more exhaustive and systematic knowledge of virus-pathogen interactions.  相似文献   
62.
Understanding the effects of temperature on prey–predator interactions is a key issue to predict the response of natural communities to climate change. Higher temperatures are expected to induce an increase in predation rates. However, little is known on how temperature influences close‐range encounter of prey–predator interactions, such as predator's attack velocities. Based on the speed–accuracy trade‐off concept, we hypothesized that the increase in predator attack velocity by increasing temperature reduces the accuracy of the attack, leading to a lower probability of capture. We tested this hypothesis on the dragonfly larvae Anax imperator and the zooplankton prey Daphnia magna. The prey–predator encounters were video‐recorded at high speed, and at three different temperatures. Overall, we found that (1) temperature had a strong effect on predator's attack velocities, (2) prey did not have the opportunity to move and/or escape due to the high velocity of the predator during the attack, and (3) neither velocity nor temperature had significant effects on the capture success. By contrast, the capture success mainly depended on the accuracy of the predator in capturing the prey. We found that (4) some 40% of mistakes were undershooting and some 60% aimed below or above the target. No lateral mistake was observed. These results did not support the speed–accuracy trade‐off hypothesis. Further studies on dragonfly larvae with different morphological labial masks and speeds of attacks, as well as on prey with different escape strategies, would provide new insights into the response to environmental changes in prey–predator interactions.  相似文献   
63.
64.
65.
Control of lymphocyte development by nuclear factor-kappaB   总被引:1,自引:0,他引:1  
  相似文献   
66.
The accumulation of amyloid fibrils is a feature of amyloid diseases, where cell toxicity is due to soluble oligomeric species that precede fibril formation or are formed by fibril fragmentation, but the mechanism(s) of fragmentation is still unclear. Neutrophil-derived elastase and histones were found in amyloid deposits from patients with different systemic amyloidoses. Neutrophil extracellular traps (NETs) are key players in a death mechanism in which neutrophils release DNA traps decorated with proteins such as elastase and histones to entangle pathogens. Here, we asked whether NETs are triggered by amyloid fibrils, reasoning that because proteases are present in NETs, protease digestion of amyloid may generate soluble, cytotoxic species. We show that amyloid fibrils from three different sources (α-synuclein, Sup35, and transthyretin) induced NADPH oxidase-dependent NETs in vitro from human neutrophils. Surprisingly, NET-associated elastase digested amyloid fibrils into short species that were cytotoxic for BHK-21 and HepG2 cells. In tissue sections from patients with primary amyloidosis, we also observed the co-localization of NETs with amyloid deposits as well as with oligomers, which are probably derived from elastase-induced fibril degradation (amyloidolysis). These data reveal that release of NETs, so far described to be elicited by pathogens, can also be triggered by amyloid fibrils. Moreover, the involvement of NETs in amyloidoses might be crucial for the production of toxic species derived from fibril fragmentation.  相似文献   
67.
Preeclampsia (PE) occurs annually in 8% of pregnancies. Patients without risk factors represent 10% of these. There are currently no first-trimester biochemical markers that accurately predict PE. An increase in serum 60- and 70-KDa extracellular heat shock proteins (eHsp) has been shown in patients who developed PE at 34 weeks. We sought to determine whether there is a relationship between first-trimester eHsp and the development of PE. This was a prospective cohort study performed at a third level hospital in Mexico City from 2019 to 2020. eHsp levels were measured during the first-trimester ultrasound in singleton pregnancies with no comorbidities. First-trimester eHsp levels and biochemical parameters of organ dysfunction were compared between patients who developed preeclampsia and those who did not. All statistical analyses and model of correlation (r) between eHsp and clinical parameter were performed using bootstrapping R-software. p-values <0.05 were considered significant. The final analysis included 41 patients. PE occurred in 11 cases. eHsp-60 and eHsp−70 were significantly higher at 12 weeks in patients who developed PE (p = 0.001), while eHsp-27 was significantly lower (p = 0.004). Significant differences in first-trimester eHsp concentration suggest that these are possible early biomarkers useful for the prediction of PE.  相似文献   
68.
69.
70.
Abstract

Proteases are a diverse group of hydrolytic enzymes, ranging from single-domain catalytic molecules to sophisticated multi-functional macromolecules. Human proteases are divided into five mechanistic classes: aspartate, cysteine, metallo, serine and threonine proteases, based on the catalytic mechanism of hydrolysis. As a protective mechanism against uncontrolled proteolysis, proteases are often produced and secreted as inactive precursors, called zymogens, containing inhibitory N-terminal propeptides. Protease propeptide structures vary considerably in length, ranging from dipeptides and propeptides of about 10 amino acids to complex multifunctional prodomains with hundreds of residues. Interestingly, sequence analysis of the different protease domains has demonstrated that propeptide sequences present higher heterogeneity compared with their catalytic domains. Therefore, we suggest that protease inhibition targeting propeptides might be more specific and have less off-target effects than classical inhibitors. The roles of propeptides, besides keeping protease latency, include correct folding of proteases, compartmentalization, liganding, and functional modulation. Changes in the propeptide sequence, thus, have a tremendous impact on the cognate enzymes. Small modifications of the propeptide sequences modulate the activity of the enzymes, which may be useful as a therapeutic strategy. This review provides an overview of known human proteases, with a focus on the role of their propeptides. We review propeptide functions, activation mechanisms, and possible therapeutic applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号