首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   224篇
  免费   25篇
  249篇
  2023年   4篇
  2022年   6篇
  2021年   8篇
  2020年   4篇
  2019年   7篇
  2018年   4篇
  2017年   5篇
  2016年   4篇
  2015年   17篇
  2014年   11篇
  2013年   11篇
  2012年   10篇
  2011年   8篇
  2010年   5篇
  2009年   16篇
  2008年   11篇
  2007年   9篇
  2006年   11篇
  2005年   15篇
  2004年   13篇
  2003年   7篇
  2002年   7篇
  1997年   2篇
  1993年   2篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1981年   2篇
  1979年   1篇
  1976年   3篇
  1973年   1篇
  1971年   3篇
  1970年   1篇
  1967年   5篇
  1966年   2篇
  1965年   3篇
  1964年   1篇
  1963年   3篇
  1962年   1篇
  1961年   1篇
  1960年   1篇
  1959年   3篇
  1958年   1篇
  1957年   1篇
  1954年   1篇
  1950年   1篇
  1938年   1篇
  1936年   1篇
排序方式: 共有249条查询结果,搜索用时 15 毫秒
41.
42.
Zusammenfassung Da in den letzten Jahren die Beobachtungen über ein einkerniges Tapetum weiter zugenommen haben, liegt die Vermutung nahe, daß dieses eine weitere Verbreitung hat, als bisher angenommen wurde. In der vorliegenden Arbeit wurden zur Prüfung der jüngst aufgeworfenen Frage, ob dem Vorkommen des einkernigen Tapetums eine gewisse systematische Bedeutung zukäme, nicht nur die Angaben über das einkernige Tapetum (vgl. die Zusammenstellung S. 15–17) kritisch gesichtet, sondern auch alle Angaben über ein mehrkerniges Tapetum gesammelt und beide Vorkommen einander gegenübergestellt (vgl. den systematischen Teil). Es schien auch angezeigt, auf die verschiedenartigen Abweichungen von der normalen Tapetumentwicklung hinzuweisen, da in einzelnen solchen Fällen (bei weiblichen Pflanzen und pollensterilen Apomikten) ein Unterbleiben oder Verzögern von Kernteilungen in den Tapetumzellen beobachtet werden konnte, wodurch eine Einkernigkeit vorgetäuscht sein kann. — Das Vorhandensein sowohl eines inneren als auch eines mehrschichtigen Tapetums ist in den vorliegenden Fällen nicht an eine bestimmte Kernzahl geknüpft.  相似文献   
43.
Hemicellulose polysaccharides influence assembly and properties of the plant primary cell wall (PCW), perhaps by interacting with cellulose to affect the deposition and bundling of cellulose fibrils. However, the functional differences between plant cell wall hemicelluloses such as glucomannan, xylan, and xyloglucan (XyG) remain unclear. As the most abundant hemicellulose, XyG is considered important in eudicot PCWs, but plants devoid of XyG show relatively mild phenotypes. We report here that a patterned β-galactoglucomannan (β-GGM) is widespread in eudicot PCWs and shows remarkable similarities to XyG. The sugar linkages forming the backbone and side chains of β-GGM are analogous to those that make up XyG, and moreover, these linkages are formed by glycosyltransferases from the same CAZy families. Solid-state nuclear magnetic resonance indicated that β-GGM shows low mobility in the cell wall, consistent with interaction with cellulose. Although Arabidopsis β-GGM synthesis mutants show no obvious growth defects, genetic crosses between β-GGM and XyG mutants produce exacerbated phenotypes compared with XyG mutants. These findings demonstrate a related role of these two similar but distinct classes of hemicelluloses in PCWs. This work opens avenues to study the roles of β-GGM and XyG in PCWs.

Patterned β-GGM resembles xyloglucan in structure, biosynthesis, and function.

In a Nutshell Background: Plant primary cell walls (PCWs) need to be rigid enough to define the plant shape and yet allow cell expansion at the same time. Plants achieve this by forming a complex network that is composed of cellulose and various non-cellulosic polysaccharides, such as hemicelluloses. Cell walls differ in the abundance of the various hemicelluloses, and their roles are poorly understood. In contrast to xyloglucan (XyG), which has been the most extensively studied hemicellulose in the PCWs, neither the structure nor functions of glucomannan has been resolved. Question: Are the functions of the glucomannan in PCWs distinct from the roles of the most abundant hemicellulose, XyG? Findings: We discovered a type of glucomannan in eudicot PCWs, which we named β-galactoglucomannan (β-GGM) because of its distinctive structures: disaccharide side chains of β-Gal-α-Gal and alternating repeats of Glc-Man in the backbone. Similarity to XyG in structure and biosynthesis led us to identify a β-galactosyltransferase for the β-GGM biosynthesis. We found that β-GGM contributed to normal cell expansion, in a way that was masked by the presence of XyG. These results suggest related functions of β-GGM to XyG, highlighting the necessity to consider the contribution of multiple hemicelluloses in the functional study of plant cell walls. Next steps: We would like to know how β-GGM binds to cellulose, and how this differs to cellulose binding of XyG. Investigation of the precise arrangements and interactions of cellulose and hemicelluloses including β-GGM and XyG will help further understanding of the enigmatic functions of hemicelluloses.  相似文献   
44.
Kono M  Goletz PW  Crouch RK 《Biochemistry》2008,47(28):7567-7571
Rhodopsin is the photosensitive pigment in the rod photoreceptor cell. Upon absorption of a photon, the covalently bound 11- cis-retinal isomerizes to the all- trans form, enabling rhodopsin to activate transducin, its G protein. All -trans-retinal is then released from the protein and reduced to all -trans-retinol. It is subsequently transported to the retinal pigment epithelium where it is converted to 11- cis-retinol and oxidized to 11- cis-retinal before it is transported back to the photoreceptor to regenerate rhodopsin and complete the visual cycle. In this study, we have measured the effects of all -trans- and 11- cis-retinals and -retinols on the opsin's ability to activate transducin to ascertain their potentials for activating the signaling cascade. Only 11- cis-retinal acts as an inverse agonist to the opsin. All -trans-retinal, all -trans-retinol, and 11- cis-retinol are all agonists with all -trans-retinal being the most potent agonist and all -trans-retinol being the least potent. Taken as a whole, our study is consistent with the hypothesis that the steps in the visual cycle are optimized such that the rod can serve as a highly sensitive dim light receptor. All -trans-retinal is immediately reduced in the photoreceptor to prevent back reactions and to weaken its effectiveness as an agonist before it is transported out of the cell; oxidation of 11- cis-retinol occurs in the retinal pigment epithelium and not the rod photoreceptor cell because 11- cis-retinol can act as an agonist and activate the signaling cascade if it were to bind an opsin, effectively adapting the cell to light.  相似文献   
45.
Architectural proteins play an important role in compacting and organizing the chromosomal DNA in all three kingdoms of life (Eukarya, Bacteria and Archaea). These proteins are generally not conserved at the amino acid sequence level, but the mechanisms by which they modulate the genome do seem to be functionally conserved across kingdoms. On a generic level, architectural proteins can be classified based on their structural effect as DNA benders, DNA bridgers or DNA wrappers. Although chromatin organization in archaea has not been studied extensively, quite a number of architectural proteins have been identified. In the present paper, we summarize the knowledge currently available on these proteins in Crenarchaea. By the type of architectural proteins available, the crenarchaeal nucleoid shows similarities with that of Bacteria. It relies on the action of a large set of small, abundant and generally basic proteins to compact and organize their genome and to modulate its activity.  相似文献   
46.
47.
48.

Purpose

Agriculture is a major water user worldwide, potentially depriving many ecosystems of water. Comprehensive global impact assessment methodologies are therefore required to assess impacts from water consumption on biodiversity. Since scarcity of water, as well as species richness, varies greatly between different world regions, a spatially differentiated approach is needed. Therefore, our aim is to enhance a previously published methodology in terms of spatial and species coverage.

Methods

We developed characterization factors for lifecycle impact assessment (LCIA) targeting biodiversity loss of various animal taxa (i.e., birds, reptiles, mammals, and amphibians) in wetlands. Data was collected for more than 22,000 wetlands worldwide, distinguishing between surface water- and groundwater-fed wetlands. Additionally, we account for a loss of vascular plant species in terrestrial ecosystems, based on precipitation. The characterization factors are expressed as global fractions of potential species extinctions (PDF) per cubic meter of water consumed annually and are developed with a spatial resolution of 0.05 arc degrees. Based on the geographic range of species, as well as their current threat level, as indicated by the International Union for Conservation of Nature (IUCN), we developed a vulnerability indicator that is included in the characterization factor.

Results and discussion

Characterization factors have maximal values in the order of magnitude of 10?11 PDF·year/m3 for animal taxa combined and 10?12 PDF·year/m3 for vascular plants. The application of the developed factors for global cultivation of wheat, maize, cotton, and rice highlights that the amount of water consumption alone is not sufficient to indicate the places of largest impacts but that species richness and vulnerability of species are indeed important factors to consider. Largest impacts are calculated for vascular plants in Madagascar, for maize, and for animal taxa; in Australia and the USA for surface water consumption (cotton); and in Algeria and Tunisia for groundwater consumption (cotton).

Conclusions

We developed a spatially differentiated approach to account for impacts from water consumption on a global level. We demonstrated its functionality with an application to a global case study of four different crops.
  相似文献   
49.
To determine what capabilities wood-eating and detritivorous catfishes have for the digestion of refractory polysaccharides with the aid of an endosymbiotic microbial community, the pH, redox potentials, concentrations of short-chain fatty acids (SCFAs), and the activity levels of 14 digestive enzymes were measured along the gastrointestinal (GI) tracts of three wood-eating taxa (Panaque cf. nigrolineatus “Marañon”, Panaque nocturnus, and Hypostomus pyrineusi) and one detritivorous species (Pterygoplichthys disjunctivus) from the family Loricariidae. Negative redox potentials (?600 mV) were observed in the intestinal fluids of the fish, suggesting that fermentative digestion was possible. However, SCFA concentrations were low (<3 mM in any intestinal region), indicating that little GI fermentation occurs in the fishes’ GI tracts. Cellulase and xylanase activities were low (<0.03 U g?1), and generally decreased distally in the intestine, whereas amylolytic and laminarinase activities were five and two orders of magnitude greater, respectively, than cellulase and xylanase activities, suggesting that the fish more readily digest soluble polysaccharides. Furthermore, the Michaelis–Menten constants (K m) of the fishes’ β-glucosidase and N-acetyl-β-d-glucosaminidase enzymes were significantly lower than the K m values of microbial enzymes ingested with their food, further suggesting that the fish efficiently digest soluble components of their detrital diet rather than refractory polysaccharides. Coupled with rapid gut transit and poor cellulose digestibility, the wood-eating catfishes appear to be detritivores reliant on endogenous digestive mechanisms, as are other loricariid catfishes. This stands in contrast to truly “xylivorous” taxa (e.g., beavers, termites), which are reliant on an endosymbiotic community of microorganisms to digest refractory polysaccharides.  相似文献   
50.
Background, aim, and scope  Characterization factors for ecotoxicity in the Life Cycle Impact Assessment (LCIA) are used to convert emissions into ecotoxicological impacts. Deriving them involves a fate and an effect analysis step. The fate factor quantifies the change in environmental concentration per unit of emission, while the effect factor quantifies the change in impact on the ecosystem per unit of environmental concentration. This paper calculates freshwater ecotoxicological effect factors for 397 pesticides belonging to 11 pesticide-specific toxic modes of action (TMoA), such as acetylcholinesterase inhibition and photosynthesis inhibition. Moreover, uncertainties in the effect factors due to uncertain background concentrations and due to limited toxicity data are quantified. Methods  To calculate median ecotoxicological effect factors (EEFs), toxic pressure assessments were made, based on the species sensitivity distribution—and the multisubstance potentially affected fraction—concept. The EEF quantifies an estimate of the fraction of species that is probably affected due to a marginal change in concentration of a pesticide. EEFs were divided into a TMoA-specific and a chemical-specific part, which were calculated on the basis of physicochemical properties, emissions, and toxicity data. Propagation of parameter uncertainty in the EEFs and the TMoA- and chemical-specific parts was quantified by Monte Carlo simulation and results were reported as 90% confidence intervals. Results  Median EEFs range from 2·10−3 to 7·106 l/g. Uncertainty in the TMoA-specific part is dominated by uncertainty in the TMoA-specific spread in species sensitivity and by uncertainty in the effective toxicity of a TMoA. Uncertainty in the chemical-specific part of the EEFs depends on the number of species for which toxicity data are available to calculate average toxicity (n s) and ranges from a median uncertainty of 2.6 orders of magnitude for n s = 2 to one order of magnitude for n s ≥ 4. The TMoA-specific effect factor for systemic fungicides shows the largest uncertainty range. For seven TMoAs, uncertainty ranges of the TMoA-specific effect factor are less than two orders of magnitude. For the other four TMoAs, the EEF uncertainty range is between two and eight orders of magnitude. For the chemical-specific part of the EEFs, we found that variation in uncertainty readily decreases for pesticides for which toxicity data are available for at least three species. Discussion  The same parameters that contributed most to uncertainty were found for pesticides as were found before for high-production-volume chemicals. However, uncertainty in concentrations of pesticides was lower. TMoA-specific factors obtained with the applied nonlinear method differ up to nine orders of magnitude from the factor of 0.5, which is used in the linear method. With the applied method, a distinction in EEFs can be made among different TMoAs. Conclusions   Ecotoxicological effect factors are presented, including overviews of their uncertainty ranges and the main contributors to uncertainty. The applied nonlinear method provides the possibility to quantify parameter uncertainty in the TMoA-specific part of the ecotoxicological effect factor, which is helpful to get more insight in how uncertainty in ecotoxicological characterization factors can be reduced. Recommendations and perspectives  The calculated uncertainty ranges can be included in life cycle assessment (LCA) case studies, which allows for better interpretation of LCA results obtained with the EEFs. To put the uncertainty in effect factors into perspective within LCIA, more information on the uncertainty in fate factors should be derived. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号