首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85篇
  免费   3篇
  88篇
  2023年   2篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   2篇
  2016年   3篇
  2015年   8篇
  2014年   5篇
  2013年   6篇
  2012年   13篇
  2011年   8篇
  2010年   3篇
  2009年   3篇
  2008年   4篇
  2007年   4篇
  2006年   3篇
  2005年   5篇
  2004年   2篇
  2003年   1篇
  2002年   5篇
  1990年   1篇
  1984年   1篇
  1971年   1篇
排序方式: 共有88条查询结果,搜索用时 15 毫秒
21.
Myoglobin has been immobilized onto different ordered mesoporous silicates. The effect of the pH on the adsorption, leaching and activity was studied. The results showed that the maximum amount of protein was adsorbed at a pH 6.5, just below the protein isoelectric point (7–7.3). There was no effect of increasing ionic strength on the adsorption profile at different pH values. The adsorption is rationalized in terms of local electrostatic forces acting between the enzyme and the silica surface as well as hydrophobic interactions close to the protein isoelectric point, whereas at low pH the global charges give rise to protein–protein repulsion and at high pH enzyme–silica repulsion. Higher amounts of immobilized myoglobin were leached at a pH 4, while lower amounts were leached at pH 6.5. The catalytic activity of myoglobin immobilized onto SBA-15 showed optimal activity at a pH 6.5 in comparison to a pH of 5 for the free form.  相似文献   
22.
23.
Neurochemical Research - The original version of this article unfortunately contains an error in Fig. 2a (4th image for walnut). This has been corrected by publishing this erratum.  相似文献   
24.
Temporal oscillations of circulatory thiobarbituric acid reactive substances (TBARS), antioxidants such as reduced glutathione (GSH), superoxide dismutase (SOD), and catalase and glucose, cholesterol, total protein and aspartate transaminase (AST) were studied under LD (12:12 h) and constant light (LL) (500 lux) conditions after exposing the animal for 21 days. Advances in the acrophase of GSH, SOD, catalase, glucose, total protein and (AST) rhythms and delays in TBARS and cholesterol were found; amplitude and mesor values of these rhythms were found to be altered during constant light treatment. The above said circadian alterations during LL exposure may be due to (1) formation of photooxidants and stress mediated lipid peroxidation, suppression of melatonin (2) modulation of neuroendocrine and neurotransmitters rhythm (3) suppression of sleep - wake cycle (4) feeding and locomotion rhythm. The exact mechanism still remains to be explored and further research needed.  相似文献   
25.
The development of different approaches to use agricultural residues as a source of high value-added products, become a must, especially after the problems emerged due to their accumulation. This contribution demonstrates the potential of agricultural residues, Linuim usitatissium (flax seed) and Nigella sativa (black seed) peels, as raw materials for the production of bioactive products, botanical insecticides, against Cx. pipiens, with deep analysis to their chemical constituents by gas chromatography-mass spectrometry, the larvicidal efficacies of the three crude extracts (methylene chloride, petroleum ether and methanol 70%) from the two plant waste peels were evaluated for the first time against the late third instar larvae of Cx. pipiens. Results indicated different lethal doses in larvae depending on the efficacy of organic solvent used. For both compounds methanol 70% extracts produced the highest dry yield. The most efficient solvent is petroleum ether in case of both flax and Black seed peels. Petroleum ether extract exhibited the highest toxicity against Cx. pipiens with an LC50 of 69.6383 ppm. The same results for black seed indicated that petroleum ether was the most efficient against Cx. pipiens with an LC50 of 40.7748 ppm. The study revealed for the first time the type of phytochemical constituents presents in peels of flax and black seeds using GC–MS analysis which revealed twenty-eight constituents among extracts of flax and black seed peels ranging from to 58.8711% to 99.99% of the total extracts. GC–MS profiling showed that a five constituents, 9-2-Methyl-Z, Z-3, 13 octadecadienol (terpenoid), 9,17-Octadecadienal, (Z)-, Nonanoic acid, 9-oxo-, methyl ester, 9,12-Octadecadienoic acid Z,Z and Octasiloxane, 1,1,3,3,5,5,7,7,9,9,11,11,13,13,15,15-hexadecamethyl- have insecticidal activity beside many other biological activities as recorded from a variety of botanical extracts. While the constituents like Hexadecanoic acid, methyl ester and cis-9-Hexadecenal, both of them are larvicidal, cis-Vaccenic acid and 9-Oxononanoic acid showing only an insecticidal activity beside Undecanoic acid the mosquito repellent. The other six constituents Linoelaidic acid, Oleic Acid, Z-2-Octadecen-1-ol, 1-Methoxy-3-hydroxymethylheptane, Cis-11,14–Eicosadieonic acid-methyl ester and Heptasiloxane, 1,1,3,3,5,5,7,7,9,9,11,11,13,13-tetradecamethyl- are constituents of other plant extracts which showed as a whole an insecticidal activity.  相似文献   
26.
Basal ganglia circuits are affected in neurological disorders such as Parkinson's disease (PD), essential tremor, dystonia and Tourette syndrome. Understanding the structural and functional connectivity of these circuits is critical for elucidating the mechanisms of the movement and neuropsychiatric disorders, and is vital for developing new therapeutic strategies such as deep brain stimulation (DBS). Knowledge about the connectivity of the human basal ganglia and thalamus has rapidly evolved over recent years through non-invasive imaging techniques, but has remained incomplete because of insufficient resolution and sensitivity of these techniques. Here, we present an imaging and computational protocol designed to generate a comprehensive in vivo and subject-specific, three-dimensional model of the structure and connections of the human basal ganglia. High-resolution structural and functional magnetic resonance images were acquired with a 7-Tesla magnet. Capitalizing on the enhanced signal-to-noise ratio (SNR) and enriched contrast obtained at high-field MRI, detailed structural and connectivity representations of the human basal ganglia and thalamus were achieved. This unique combination of multiple imaging modalities enabled the in-vivo visualization of the individual human basal ganglia and thalamic nuclei, the reconstruction of seven white-matter pathways and their connectivity probability that, to date, have only been reported in animal studies, histologically, or group-averaged MRI population studies. Also described are subject-specific parcellations of the basal ganglia and thalamus into sub-territories based on their distinct connectivity patterns. These anatomical connectivity findings are supported by functional connectivity data derived from resting-state functional MRI (R-fMRI). This work demonstrates new capabilities for studying basal ganglia circuitry, and opens new avenues of investigation into the movement and neuropsychiatric disorders, in individual human subjects.  相似文献   
27.
Ultra high fields (7T and above) allow functional imaging with high contrast-to-noise ratios and improved spatial resolution. This, along with improved hardware and imaging techniques, allow investigating columnar and laminar functional responses. Using gradient-echo (GE) (T2* weighted) based sequences, layer specific responses have been recorded from human (and animal) primary visual areas. However, their increased sensitivity to large surface veins potentially clouds detecting and interpreting layer specific responses. Conversely, spin-echo (SE) (T2 weighted) sequences are less sensitive to large veins and have been used to map cortical columns in humans. T2 weighted 3D GRASE with inner volume selection provides high isotropic resolution over extended volumes, overcoming some of the many technical limitations of conventional 2D SE-EPI, whereby making layer specific investigations feasible. Further, the demonstration of columnar level specificity with 3D GRASE, despite contributions from both stimulated echoes and conventional T2 contrast, has made it an attractive alternative over 2D SE-EPI. Here, we assess the spatial specificity of cortical depth dependent 3D GRASE functional responses in human V1 and hMT by comparing it to GE responses. In doing so we demonstrate that 3D GRASE is less sensitive to contributions from large veins in superficial layers, while showing increased specificity (functional tuning) throughout the cortex compared to GE.  相似文献   
28.
It has been clearly established that phytopathogenic fungi, bacteria, and viruses exert biotic stresses on plants. Much less is known, however, about the interactions between enological species of yeast and their host plants. In a previous study, we described how Saccharomyces cerevisiae, the most common enological yeast, can act as a grapevine (Vitis vinifera L.) pathogen, causing growth retardation or plant death. In the present in vitro study on 11 strains of yeast belonging to different genera, which often occur on the surfaces of vineyard grapes and V. vinifera, a link was found to exist between strain phytopathogenecity and pseudohyphal growth habits and/or endopolygalacturonase activity. The results obtained here are consistent with earlier findings showing that the phytopathogenicity of yeast strains depends on the filamentous growth process, and show that endopolygalacturonase alone is not responsible for the invasion of plants tissues. The mechanisms observed here may be of significant ecological importance and may help to explain the long periods of yeast survival found to occur in vineyards.  相似文献   
29.
A potent and selective c-Kit inhibitor 20 was identified through a structure–activity relationship study. In an in vivo mouse model of mast cell activation, 20 blocked the SCF-induced histamine release with an EC50 of 26 nM.  相似文献   
30.
Chlamydiaceae are bacterial pathogens that cause diverse diseases in humans and animals. Despite their broad host and tissue tropism, all Chlamydia species share an obligate intracellular cycle of development and have evolved sophisticated mechanisms to interact with their eukaryotic host cells. Here, we have analysed interactions of the zoonotic pathogen Chlamydia psittaci with a human epithelial cell line. We found that C. psittaci recruits the ceramide transport protein (CERT) to its inclusion. Chemical inhibition and CRISPR/Cas9‐mediated knockout of CERT showed that CERT is a crucial factor for C. psittaci infections thereby affecting different stages of the infection including inclusion growth and infectious progeny formation. Interestingly, the uptake of fluorescently labelled sphingolipids in bacteria inside the inclusion was accelerated in CERT‐knockout cells indicating that C. psittaci can exploit CERT‐independent sphingolipid uptake pathways. Moreover, the CERT‐specific inhibitor HPA‐12 strongly diminished sphingolipid transport to inclusions of infected CERT‐knockout cells, suggesting that other HPA‐12‐sensitive factors are involved in sphingolipid trafficking to C. psittaci. Further analysis is required to decipher these interactions and to understand their contributions to bacterial development, host range, tissue tropism, and disease outcome.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号