首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   428篇
  免费   30篇
  458篇
  2022年   3篇
  2021年   13篇
  2020年   3篇
  2019年   1篇
  2018年   11篇
  2017年   10篇
  2016年   11篇
  2015年   17篇
  2014年   14篇
  2013年   35篇
  2012年   45篇
  2011年   28篇
  2010年   12篇
  2009年   17篇
  2008年   22篇
  2007年   27篇
  2006年   27篇
  2005年   31篇
  2004年   23篇
  2003年   23篇
  2002年   15篇
  2001年   9篇
  2000年   5篇
  1999年   7篇
  1998年   9篇
  1997年   2篇
  1996年   4篇
  1995年   3篇
  1994年   6篇
  1993年   2篇
  1992年   3篇
  1991年   3篇
  1990年   4篇
  1989年   3篇
  1988年   2篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1979年   1篇
  1978年   1篇
  1975年   3篇
排序方式: 共有458条查询结果,搜索用时 15 毫秒
131.
Antimalarial 4-pyridones are a novel class of inhibitors of the plasmodial mitochondrial electron transport chain targeting Cytochrome bc1 (complex III). In general, the most potent 4-pyridones are lipophilic molecules with poor solubility in aqueous media and low oral bioavailability in pre-clinical species from the solid dosage form. The strategy of introducing polar hydroxymethyl groups has enabled us to maintain the high levels of antimalarial potency observed for other more lipophilic analogues whilst improving the solubility and the oral bioavailability in pre-clinical species.  相似文献   
132.
The sodium- and chloride-coupled glycine neurotransmitter transporters (GLYTs) control the availability of glycine at glycine-mediated synapses. The mainly glial GLYT1 is the key regulator of the glycine levels in glycinergic and glutamatergic pathways, whereas the neuronal GLYT2 is involved in the recycling of synaptic glycine from the inhibitory synaptic cleft. In this study, we report that stimulation of P2Y purinergic receptors with 2-methylthioadenosine 5'-diphosphate in rat brainstem/spinal cord primary neuronal cultures and adult rat synaptosomes leads to the inhibition of GLYT2 and the stimulation of GLYT1 by a paracrine regulation. These effects are mainly mediated by the ADP-preferring subtypes P2Y(1) and P2Y(13) because the effects are partially reversed by the specific antagonists N(6)-methyl-2'-deoxyadenosine-3',5'-bisphosphate and pyridoxal-5'-phosphate-6-azo(2-chloro-5-nitrophenyl)-2,4-disulfonate and are totally blocked by suramin. P2Y(12) receptor is additionally involved in GLYT1 stimulation. Using pharmacological approaches and siRNA-mediated protein knockdown methodology, we elucidate the molecular mechanisms of GLYT regulation. Modulation takes place through a signaling cascade involving phospholipase C activation, inositol 1,4,5-trisphosphate production, intracellular Ca(2+) mobilization, protein kinase C stimulation, nitric oxide formation, cyclic guanosine monophosphate production, and protein kinase G-I (PKG-I) activation. GLYT1 and GLYT2 are differentially sensitive to NO/cGMP/PKG-I both in brain-derived preparations and in heterologous systems expressing the recombinant transporters and P2Y(1) receptor. Sensitivity to 2-methylthioadenosine 5'-diphosphate by GLYT1 and GLYT2 was abolished by small interfering RNA (siRNA)-mediated knockdown of nitric-oxide synthase. Our data may help define the role of GLYTs in nociception and pain sensitization.  相似文献   
133.
The lipins have been described as metabolic enzymes that regulate lipid biosynthesis and also signaling processes by controlling the cellular concentration of bioactive lipids, phosphatidic acid, and diacylgycerol. In the present work we have studied the subcellular localization and role of lipin-1 in human monocyte-derived macrophages. Human macrophages express lipin-1 isoforms α and β. A transfected lipin-1α-enhanced GFP construct associates with membranes of cellular organelles that can be stained with Nile Red. Colocalization experiments with lipid droplet (LD)-specific proteins such as adipophilin/adipose differentiation-related protein/perilipin 2 or TIP47/perilipin 3 show that both proteins colocalize with lipin-1α in the same cellular structures. Reduction of the expression levels of lipin-1 by small interfering RNA technology does not impair triacylglycerol biosynthesis but reduces the size of LDs formed in response to oleic acid. In agreement with these data, peritoneal macrophages from animals that carry a mutation in the Lpin-1 gene (fld animals) also produce less and smaller LDs in response to oleic acid. Mass spectrometry determinations demonstrate that the fatty acid composition of triacylglycerol in isolated LDs from lipin-1-deficient cells differs from that of control cells. Moreover, activation of cytosolic group IVA phospholipase A(2)α, a proinflammatory enzyme that is also involved in LD biogenesis, is also compromised in lipin-1-deficient cells. Collectively, these data suggest that lipin-1 associates with LDs and regulates the activation of cytosolic group IVA phospholipase A(2)α in human monocyte-derived macrophages.  相似文献   
134.
135.
136.
137.
Transforming growth factors-beta (TGF-betas) are essential to the structural remodeling seen in cardiac disease and development; however, little is known about potential electrophysiological effects. We hypothesized that chronic exposure (6-48 h) of primary cultured neonatal rat cardiomyocytes to the type 1 TGF-beta (TGF-beta1, 5 ng/ml) may affect voltage-dependent Ca(2+) channels. Thus we investigated T- (I(CaT)) and L-type (I(CaL)) Ca(2+) currents, as well as dihydropyridine-sensitive charge movement using the whole cell patch-clamp technique and quantified Ca(V)1.2 mRNA levels by real-time PCR assay. In ventricular myocytes, TGF-beta1 did not exert significant electrophysiological effects. However, in atrial myocytes, TGF-beta1 reduced both I(CaL) and charge movement (55% at 24-48 h) without significantly altering I(CaT), cell membrane capacitance, or channel kinetics (voltage dependence of activation and inactivation, as well as the activation and inactivation rates). Reductions of I(CaL) and charge movement were explained by concomitant effects on the maximal values of L-channels conductance (G(max)) and charge movement (Q(max)). Thus TGF-beta1 selectively reduces the number of functional L-channels on the surface of the plasma membrane in atrial but not ventricular myocytes. The TGF-beta1-induced I(CaL) reduction was unaffected by supplementing intracellular recording solutions with okadaic acid (2 microM) or cAMP (100 microM), two compounds that promote L-channel phosphorylation. This suggests that the decreased number of functional L-channels cannot be explained by a possible regulation in the L-channels phosphorylation state. Instead, we found that TGF-beta1 decreases the expression levels of atrial Ca(V)1.2 mRNA (70%). Thus TGF-beta1 downregulates atrial L-channel expression and may be therefore contributing to the in vivo cardiac electrical remodeling.  相似文献   
138.
Sulfate modification on Rhizobium Nod factor signaling molecules is not a prerequisite for successful symbiosis with the common bean (Phaseolus vulgaris L.). However, many bean-nodulating rhizobia, including the broad host strain Sinorhizobium sp. BR816, produce sulfated Nod factors. Here, we show that the nodH gene, encoding a sulfotransferase, is responsible for the transfer of sulfate to the Nod factor backbone in Sinorhizobium sp. BR816, as was shown for other rhizobia. Interestingly, inactivation of nodH enables inoculated bean plants to fix significantly more nitrogen under different experimental setups. Our studies show that nodH in the wild-type strain is still expressed during the later stages of symbiosis. This is the first report on enhanced nitrogen fixation by blocking Nod factor sulfation.  相似文献   
139.

Background

Symbiosis genes (nod and nif) involved in nodulation and nitrogen fixation in legumes are plasmid-borne in Rhizobium. Rhizobial symbiotic variants (symbiovars) with distinct host specificity would depend on the type of symbiosis plasmid. In Rhizobium etli or in Rhizobium phaseoli, symbiovar phaseoli strains have the capacity to form nodules in Phaseolus vulgaris while symbiovar mimosae confers a broad host range including different mimosa trees.

Results

We report on the genome of R. etli symbiovar mimosae strain Mim1 and its comparison to that from R. etli symbiovar phaseoli strain CFN42. Differences were found in plasmids especially in the symbiosis plasmid, not only in nod gene sequences but in nod gene content. Differences in Nod factors deduced from the presence of nod genes, in secretion systems or ACC-deaminase could help explain the distinct host specificity. Genes involved in P. vulgaris exudate uptake were not found in symbiovar mimosae but hup genes (involved in hydrogen uptake) were found. Plasmid pRetCFN42a was partially contained in Mim1 and a plasmid (pRetMim1c) was found only in Mim1. Chromids were well conserved.

Conclusions

The genomic differences between the two symbiovars, mimosae and phaseoli may explain different host specificity. With the genomic analysis presented, the term symbiovar is validated. Furthermore, our data support that the generalist symbiovar mimosae may be older than the specialist symbiovar phaseoli.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-575) contains supplementary material, which is available to authorized users.  相似文献   
140.
Testosterone (T) plays an important role in developing brain, dictating sex-specific behavior and physiology. 3α,5α-Reduced neurosteroids also regulate reproductive behavior. The key enzyme in the biosynthesis of these neurosteroids is 5α-reductase (5α-R), expressed as two isozymes, 5α-R1 and 5α-R2. In this study, T and sesame oil (vehicle) were administered during postnatal sexual differentiation of the central nervous system (CNS) and mRNA levels of 5α-R isozymes, were measured using quantitative RT-PCR in prefrontal cortex of male and female rats with different androgenic status at adulthood. Our results indicate that T concentrations during postnatal sexual differentiation of the rat CNS, among other sex-dependent factors, influence brain levels of 5α-R isozymes in adulthood and the pattern of their regulation by androgen hormones.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号