首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   131篇
  免费   11篇
  2023年   2篇
  2022年   3篇
  2021年   8篇
  2020年   9篇
  2019年   9篇
  2018年   6篇
  2017年   10篇
  2016年   13篇
  2015年   15篇
  2014年   15篇
  2013年   14篇
  2012年   6篇
  2011年   7篇
  2010年   4篇
  2009年   3篇
  2008年   2篇
  2007年   4篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2003年   3篇
  2002年   2篇
  1994年   1篇
  1992年   1篇
排序方式: 共有142条查询结果,搜索用时 31 毫秒
131.
Protoplasma - One of the classes of the plant developmental programmed cell death (PCD) is vacuolar cell death or autolysis. The results of the transmission electron microscope (TEM) studies...  相似文献   
132.
To date, there has been little agreement on supporting the hypothesis that how some key vegetative traits of camelina (Camelina sativa (L.) Crantz var. ‘Soheil’) are dependent on plant biomass. Therefore, the main aim of this investigation was to quantify the relationship between the size of camelina plants and seed production across a broad-range of plant densities through modelling approaches. To make a wide range of plant densities, a fan design was used in eight replicates in an experimental field at Sari Agricultural Sciences and Natural Resources University, Iran. To quantify the relation between plant density and other plant traits, a regression analysis was carried out and the coefficient of determination (R2) was considered to evaluate the goodness of fit model. A power model (y = axb) could describe well the relationship between plant density (ranged 113–2905 plants m−2) and plant biomass, seed production, number of seeds per plant, stem diameter, and siliques number, with the coefficient of determination (R2) values of 0.85, 0.87, 0.65, 0.64, and 0.90, respectively. The harvest indexes were 13.8%–26.9%, depending on plant density. Seed production per plant was positively correlated to the siliques number (r = 0.85), the branch number (r = 0.80), and the seed number (r = 0.99) which could be key components of camelina seed production per plant. Furthermore, no significant correlation was found among plant height, thousand-seed weight, and harvest index with seed production per plant. In conclusion, plant biomass could be considered an important trait to predict plant growth models of camelina. Also, a lower plant density of camelina can be compensated by a greater number of siliques, branches and seeds per plant.  相似文献   
133.
December 2019 will never be forgotten in the history of medicine when an outbreak of pneumonia of unknown etiology in Wuhan, China sooner or later prompted the World Health Organization to issue a public health warning emergency. This is not the first nor will it be the last time that a member of β-coronaviruses (CoVs) is waging a full-scale war against human health. Notwithstanding the fact that pneumonia is the primary symptom of the novel coronavirus (2019nCoV; designated as SARS-CoV-2), the emergence of severe disease mainly due to the injury of nonpulmonary organs at the shadow of coagulopathy leaves no choice, in some cases, rather than a dreadful death. Multiple casual factors such as inflammation, endothelial dysfunction, platelet and complement activation, renin-angiotensin-aldosterone system derangement, and hypoxemia play a major role in the pathogenesis of coagulopathy in coronavirus disease 2019 (COVID-19) patients. Due to the undeniable role of coagulation dysfunction in the initiation of several complications, assessment of coagulation parameters and the platelet count would be beneficial in early diagnosis and also timely prediction of disease severity. Although low-molecular-weight heparin is considered as the first-line of treatment in COVID-19-associated coagulopathy, several possible therapeutic options have also been proposed for better management of the disease. In conclusion, this review would help us to gain insight into the pathogenesis, clinical manifestation, and laboratory findings associated with COVID-19 coagulopathy and would summarize management strategies to alleviate coagulopathy-related complications.  相似文献   
134.
Abstract

Point mutations in the human prion protein gene, leading to amino acid substitutions in the human prion protein contribute to conversion of PrPC to PrPSc and amyloid formation, resulting in prion diseases such as familial Creutzfeldt-Jakob disease (CJD), Gerstmann-Straussler-Scheinker disease (GSS), and fatal familial insomnia. We have investigated impressions of prevalent mutations including Q217R, D202N, F198S, on the human prion protein and compared the mutant models with wild types. Structural analyses of models were performed with molecular modeling and molecular dynamics simulation methods. According to our results, frequently occurred mutations are observed in conserved and fully conserved sequences of human prion protein and the most fluctuation values occur in the Helix 1 around residues 144–152 and C-terminal end of the Helix 2. Our analysis of results obtained from MD simulation clearly shows that this long-range effect plays an important role in the conformational fluctuations in mutant structures of human prion protein. Results obtained from molecular modeling such as creation or elimination of some hydrogen bonds, increase or decrease of the accessible surface area and molecular surface, loss or accumulation of negative or positive charges on specific positions, and altering the polarity and pKa values, show that amino acid point mutations, though not urgently change the stability of PrP, might have some local impacts on the protein interactions which are required for oligomerization into fibrillar species.  相似文献   
135.
136.
137.
Physiology and Molecular Biology of Plants - It is of great significance to understand the regulatory mechanisms by which plants deal with drought stress. Two EST libraries derived from rapeseed...  相似文献   
138.
139.
140.
Cerebral palsy (CP) is a neuromuscular disease due to injury in the infant’s brain. The CP disorder causes many neurologic dysfunctions in the patient. Various treatment methods have been used for the management of CP disorder. However, there has been no absolute cure for this condition. Furthermore, some of the procedures which are currently used for relief of symptoms in CP cause discomfort or side effects in the patient. Recently, stem cell therapy has attracted a huge interest as a new therapeutic method for treatment of CP. Several investigations in animal and human with CP have demonstrated positive potential of stem cell transplantation for the treatment of CP disorder. The ultimate goal of this therapeutic method is to harness the regenerative capacity of the stem cells causing a formation of new tissues to replace the damaged tissue. During the recent years, there have been many investigations on stem cell therapy. However, there are still many unclear issues regarding this method and high effort is needed to create a technology as a perfect treatment. This review will discuss the scientific background of stem cell therapy for cerebral palsy including evidences from current clinical trials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号