首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   297篇
  免费   18篇
  2023年   2篇
  2022年   7篇
  2021年   8篇
  2020年   13篇
  2019年   16篇
  2018年   10篇
  2017年   14篇
  2016年   16篇
  2015年   24篇
  2014年   26篇
  2013年   22篇
  2012年   20篇
  2011年   14篇
  2010年   13篇
  2009年   6篇
  2008年   9篇
  2007年   12篇
  2006年   4篇
  2005年   7篇
  2004年   9篇
  2003年   2篇
  2002年   9篇
  2001年   4篇
  2000年   4篇
  1999年   1篇
  1998年   4篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1993年   2篇
  1992年   3篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1988年   3篇
  1987年   5篇
  1986年   3篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1979年   3篇
  1978年   1篇
  1975年   3篇
  1971年   2篇
  1970年   1篇
排序方式: 共有315条查询结果,搜索用时 31 毫秒
111.
Tuberculosis (TB) and human immunodeficiency virus (HIV) can place a major burden on healthcare systems and constitute the main challenges of diagnostic and therapeutic programmes. Infection with HIV is the most common cause of Mycobacterium tuberculosis (Mtb), which can accelerate the risk of latent TB reactivation by 20‐fold. Similarly, TB is considered the most relevant factor predisposing individuals to HIV infection. Thus, both pathogens can augment one another in a synergetic manner, accelerating the failure of immunological functions and resulting in subsequent death in the absence of treatment. Synergistic approaches involving the treatment of HIV as a tool to combat TB and vice versa are thus required in regions with a high burden of HIV and TB infection. In this context, plant systems are considered a promising approach for combatting HIV and TB in a resource‐limited setting because plant‐made drugs can be produced efficiently and inexpensively in developing countries and could be shared by the available agricultural infrastructure without the expensive requirement needed for cold chain storage and transportation. Moreover, the use of natural products from medicinal plants can eliminate the concerns associated with antiretroviral therapy (ART) and anti‐TB therapy (ATT), including drug interactions, drug‐related toxicity and multidrug resistance. In this review, we highlight the potential of plant system as a promising approach for the production of relevant pharmaceuticals for HIV and TB treatment. However, in the cases of HIV and TB, none of the plant‐made pharmaceuticals have been approved for clinical use. Limitations in reaching these goals are discussed.  相似文献   
112.
Uremia Salt Lake, in North West Iran, has a hyper-saline water. A rare highly salinity-tolerant grass species, Aegilops cylindrica grows along its shores. Salinity tolerance of 44 genotypes of Ae. cylindrica, mainly collected from the Lake, was evaluated under control and 400 mM NaCl conditions using the physiological traits of plant height, dry weight, proline content, Na+ and K+ concentrations as well as K+/Na+ ratio. To evaluate the association between microsatellite (EST-SSR and SSR) markers and salinity tolerance, 35 primer pairs were used. Results showed a significant variation in the 44 genotypes studied in terms of their traits except for proline content. Ten most salinity-tolerant genotypes were identified based on their ability to survive, to produce the highest dry weight, and to sustain the least leaf Na+ concentration under salinity stress. The very high negative correlation found between Na+ concentration and salinity tolerance revealed the importance of individual or a combination of Na+ exclusion and excretion mechanisms contributing to the hyper-salinity tolerance of these genotypes. Clustering analysis based on marker data divided the 44 studied genotypes into two groups that were consistent with their saline and non-saline geographical areas. Results of molecular markers showed that four microsatellite markers (Xgwm312, Xwmc170, Xgwm291 and Xgwm410) generated a distinguished banding pattern in ten most salinity-tolerant genotypes. These results supported previous reports on their linkage with Na+ exclusion genes (HKT1;5 and HKT1;4) in wheat, which provided further evidence of usefulness of both genes and the linked markers to the salinity tolerance of the halophytic grass family species.  相似文献   
113.
114.
115.
116.
Chronic obstructive pulmonary disease (COPD) is a multicomponent disease characterized by emphysema and/or chronic bronchitis. The aim of this study was to investigate the effect of cigarette smoke exposure on mast cells and mast cell function in vitro and in vivo in order to get further insight in the role of mast cells in the pathogenesis of emphysema. Cigarette smoke conditioned medium (CSM) induced the expression of mast cell tryptase (MMCP-6) in primary cultured mast cells. This tryptase expression was caused by the CSM-stimulated production of TGF-β in culture and neutralization of TGF-β suppressed the CSM-induced expression of tryptase in mast cells. An increase in mast cell tryptase expression was also found in an experimental model for emphysema. Exposure of mice to cigarette smoke increased the number of mast cells in the airways and the expression of mast cell tryptase. In accordance with the in vitro findings, TGF-β in bronchoalveolar lavage fluid of smoke-exposed animals was significantly increased. Our study indicates that mast cells may be a source of TGF-β production after cigarette smoke exposure and that in turn TGF-β may change the tryptase expression in mast cells.  相似文献   
117.
The most prominent capabilities of mesenchymal stem cells (MCSs) which make them promising for therapeutic applications are their capacity to endure and implant in the target tissue. However, the therapeutic applications of these cells are limited due to their early death within the first few days following transplantation. Therefore, to improve cell therapy efficacy, it is necessary to manipulate MSCs to resist severe stresses imposed by microenvironment. In this study, we manipulated MSCs to express a cytoprotective factor, nuclear factor erythroid-2 related factor 2 (Nrf2) to address this issue. Full-length human Nrf2 cDNA was isolated and TOPO cloned into TOPO cloning vector and then transferred to gateway adapted adenovirus expression vector by LR recombination reaction. Afterwards, the Nrf2 bearing recombinant virus was prepared in appropriate mammalian cell line and used to infect MSCs. The viability and apoptosis of the Nrf2 expressing MSCs were evaluated following hypoxic and oxidative stress conditions. Transient expression of Nrf2 by MSCs protected them against cell death and the apoptosis triggered by hypoxic and oxidative stress conditions. Nrf2 also enhanced the activity of SOD and HO-1. These findings could be used as a strategy for prevention of graft cell death in MSC-based cell therapy. It also indicates that management of cellular stress responses can be used for practical applications.  相似文献   
118.

The potential of Ralstonia eutropha as a biocatalyst for desulfurization of dibenzothiophene (DBT) was studied in growing and resting cell conditions. The results of both conditions showed that sulfur was removed from DBT which accompanied by the formation of 2-hydroxybiphenyl (2-HBP). In growing cell experiments, glucose was used as an energy supplying substrate in initial concentrations of 55 mM (energy-limited) and 111 mM (energy-sufficient). The growing cell behaviors were quantitatively described using the logistic equation and maintenance concept. The results indicated that 2-HBP production was higher for the energy-sufficient cultures, while the values of the specific growth rate and the maintenance coefficient for these media were lower than those of the energy-limited cultures. Additionally, the kinetic studies showed that the half-saturation constant for the energy-limited cultures was 2 times higher than the energy-sufficient ones where the inhibition constant (0.08 mM) and the maximum specific DBT desulfurization rate (0.002 mmol gcell −1 h−1) were almost constant. By defining desulfurizing capacity (D DBT) including both the biomass concentration and time to reach a particular percentage of DBT conversion, the best condition for desulfurizing cell was determined at 23% gcell L−1 h−1 which corresponded with the resting cells that were harvested at the mid-exponential growth phase.

  相似文献   
119.
To quantify both temperature (T) and water potential (ψ) effects on sesame (Sesamum indicum L.) seed germination (SG) and also to determine the cardinal T s for this plant, a laboratory experiment was carried out using hydrothermal time model (HTT). For this purpose, four sesame cultivars (‘Asbomahalleh’, ‘Darab’, ‘Dashtestan’ and ‘Yellowhite’) were germinated at seven constant T s (20, 25, 30, 35, 37, 39 and 43 °C) at each of the following ψ s (0, ? 0.12, ? 0.24 and ? 0.36 MPa; provided by PEG 8000). Germination rate (GR) and germination percentage (GP) significantly influenced by ψ, T and their interactions in all cultivars (P ≤ 0.01). There was no significant difference, based on the confidence intervals of the model coefficients, between cultivars, so an average of cardinal T s was 14.7, 35.4 and 47.2 °C for the minimum (T b), optimum (T o) and maximum (T c) T s, respectively, in the control condition (0 MPa). Hydrotime values in all cultivars decreased when T was increased to T o and then remained constant at T s > T o (15 MPa h?1). An average value of ψ b(50) was estimated to be ? 1.23 MPa at T s ≤ T o and then increased linearly (0.1041 MPa°Ch?1, the slope of the relationship between ψ b(50) and supra-optimal T s) with T when T s increased above T o and finally reached to zero at T c. The T b and T o values were not influenced by ψ, but T c value decreased (from 47.2 for zero to 43.5 °C for ? 0.36 MPa) at supra-optimal T s as a result of the effect of ψ on GR. Based on our findings, this model (as a predictive tool) and or the estimated parameter values in this study can easily be used in sesame SG simulation models to quantitatively characterize the physiological status of sesame seed populations at different T s and ψ s.  相似文献   
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号