首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2589篇
  免费   264篇
  国内免费   2篇
  2855篇
  2021年   39篇
  2020年   15篇
  2019年   27篇
  2018年   24篇
  2017年   27篇
  2016年   45篇
  2015年   85篇
  2014年   82篇
  2013年   114篇
  2012年   138篇
  2011年   135篇
  2010年   86篇
  2009年   77篇
  2008年   99篇
  2007年   99篇
  2006年   104篇
  2005年   109篇
  2004年   88篇
  2003年   124篇
  2002年   120篇
  2001年   85篇
  2000年   95篇
  1999年   82篇
  1998年   34篇
  1997年   41篇
  1996年   27篇
  1995年   27篇
  1994年   27篇
  1993年   22篇
  1992年   65篇
  1991年   64篇
  1990年   53篇
  1989年   59篇
  1988年   45篇
  1987年   36篇
  1986年   38篇
  1985年   35篇
  1984年   26篇
  1983年   33篇
  1982年   24篇
  1981年   25篇
  1980年   14篇
  1979年   27篇
  1978年   31篇
  1977年   16篇
  1976年   19篇
  1975年   14篇
  1974年   25篇
  1973年   13篇
  1969年   15篇
排序方式: 共有2855条查询结果,搜索用时 15 毫秒
41.
In Clostridium acetobutylicum ATCC 824, acetoacetate decarboxylase (EC 4.1.1.4) is essential for solvent production, catalyzing the decarboxylation of acetoacetate to acetone. We report here the purification of the enzyme from C. acetobutylicum ATCC 824 and the cloning and expression of the gene encoding the acetoacetate decarboxylase enzyme in Escherichia coli. A bacteriophage lambda EMBL3 library of C. acetobutylicum DNA was screened by plaque hybridization, using oligodeoxynucleotide probes derived from the N-terminal amino acid sequence obtained from the purified protein. Phage DNA from positive plaques was analyzed by Southern hybridization. Restriction mapping and subsequent subcloning of DNA fragments hybridizing to the probes localized the gene within an approximately 2.1 kb EcoRI/Bg/II fragment. A polypeptide with a molecular weight of approximately 28,000 corresponding to that of the purified acetoacetate decarboxylase was observed in both Western blots (immunoblots) and maxicell analysis of whole-cell extracts of E. coli harboring the clostridial gene. Although the expression of the gene is tightly regulated in C. acetobutylicum, it was well expressed in E. coli, although from a promoter sequence of clostridial origin.  相似文献   
42.
In order to determine the relative role of low- and high-pressure reflexes, respectively, on forearm sympathetic nerve activity (fSNA), 10 normal male subjects underwent a 4-step (5 min each) graded lower body negative pressure (LBNP) from -10 to -50 mmHg. Central venous pressure (CVP) and stroke volume gradually decreased (p<0.05), and arterial pulse pressure (PP) abruptly decreased at LBNP of -50 mmHg. Mean arterial pressure (MAP) remained unchanged. Forearm venous plasma norepinephrine concentration (fvNE) increased significantly at LBNP of -35 mmHg (p<0.05) and with a further sharp increase during LBNP of -50 mmHg (p<0.05). High degrees of intra-individual correlations were observed between changes in Log [fvNE] and CVP (r-values from -0.78 to -0.96, p<0.01). We conclude that low-pressure reflexes are the major determinants of fSNA during non-hypotensive gravitational stress (MAP and PP unchanged). When the gravitational stress is more pronounced, a decrease in PP further augments fSNA through inhibition of high-pressure arterial baroreflexes.  相似文献   
43.
Oral administration of self-Ags can dampen or prevent autoimmune processes by induction of bystander suppression. Based on encouraging results from experiments in nonobese diabetic (NOD) mice, clinical trials have been initiated in type 1 diabetes using human insulin as an oral Ag. However, neither the precise antigenic requirements nor the mechanism of bystander suppression are currently understood in detail. Here we report that 1) a 1-aa difference in position 30 of the insulin B chain abrogated the ability of insulin to confer protection in both NOD as well as a virus-induced transgenic mouse model for type 1 diabetes. In the latter model transgenic mice express the nucleoprotein (NP) of lymphocytic choriomeningitis virus (LCMV) under the control of the rat insulin promotor (RIP) in the pancreatic beta cells and develop diabetes only following LCMV infection; and 2) protection could be transferred with insulin B chain-restimulated but not LCMV-restimulated splenocytes from RIP-NP transgenic mice, demonstrating that the mechanism of diabetes prevention in the RIP-NP model is mediated by insulin B chain-specific, IL-4-producing regulatory cells acting as bystander suppressors.  相似文献   
44.
45.
The intracellular transport and degradation of in vivo endocytosed chylomicron remnants labelled with 125I in the protein moiety was studied in rat liver cells by means of subcellular fractionation in Nycodenz and sucrose density gradients. Initially, the radioactivity was located in low-density endosomes and was sequentially transferred to light and dense lysosomes. Data from gel filtration of the light and dense lysosomal fractions showed radioactive material with a molecular weight of about 1000-2000, representing short peptide fragments or amino acids which remain attached to iodinated tyramine cellobiose. In addition, undegraded apoproteins accumulated in both types of lysosome. Our data suggest that endocytosed chylomicron remnant apoproteins are first located in low-density endosomes and are sequentially transferred to light and dense lysosomes. Furthermore, the degradation process starts in the light lysosomes.  相似文献   
46.
The molecular and cellular mechanism of estrogen action in skeletal tissue remains unclear. The purpose of this study was to understand the role of estrogen receptor-beta, (ERbeta) on cortical and cancellous bone during growth and aging by comparing the bone phenotype of 6- and 13-month-old female mice with or without ERbeta. Groups of 11-14 wild-type (WT) controls and ERbeta knockout (BERKO) female mice were necropsied at 6 and 13 months of age. At both ages, BERKO mice did not differ significantly from WT controls in uterine weight and uterine epithelial thickness, indicating that ERbeta does not regulate the growth of uterine tissue. Femoral length increased significantly by 5.5% at 6 months of age in BERKO mice compared with WT controls. At 6 months of age, peripheral quantitative computerized tomography (pQCT) analysis of the distal femoral metaphysis (DFM) and femoral shafts showed that BERKO mice had significantly higher cortical bone content and periosteal circumference as compared with WT controls at both sites. In contrast to the findings in cortical bone, at 6 months of age, there was no difference between BERKO and WT mice in trabecular density, trabecular bone volume (TBV), or formation and resorption indices at the DFM. In 13-month-old WT mice, TBV (-41%), trabecular density (-27%) and cortical thickness decreased significantly. while marrow cavity and endocortical circumference increased significantly compared with 6-month-old WT mice. These age-related decreases in cancellous and endocortical bone did not occur in BERKO mice. At 13 months of age, BERKO mice had significantly higher total, trabecular and cortical bone, while having significantly lower bone resorption, bone formation and bone turnover in DFM compared with WT mice. These results indicate that deleting ERbeta protected against age-related bone loss in both the cancellous and endocortical compartments by decreasing bone resorption and bone turnover in aged female mice. These data demonstrate that in female mice, ERbeta plays a role in inhibiting periosteal bone formation, longitudinal and radial bone growth during the growth period, while it plays a role in stimulating bone resorption, bone turnover and bone loss on cancellous and endocortical bone surfaces during the aging process.  相似文献   
47.
Currently, there is no effective therapy for cryptosporidiosis and it is unclear why antifolate drugs which are effective treatments for infections caused by closely related parasites are not also effective against Cryptosporidium parvum. In protozoa, the target of these drugs, dihydrofolate reductase (DHFR), exists as a bifunctional enzyme also manifesting thymidylate synthase (TS) activity and is encoded by a fused DHFR-TS gene. In order to prepare a probe to isolate the C. parvum DHFR-TS gene we have used degenerate oligonucleotides whose sequences are based on strongly conserved regions of TS protein sequence to prime the polymerase chain reaction (PCR) with C. parvum DNA. The PCR amplified a 375-bp DNA fragment which was cloned and sequenced; the deduced amino acid sequence had significant identity with known TS sequences, including strict conservation of all phylogenetically invariant TS amino acid residues. The cloned PCR fragment was used as a probe to isolate a number of overlapping clones from a C. parvum genomic library which were definitively shown to be of cryptosporidial origin by genomic Southern and molecular karyotype analyses. The deduced protein sequence of C. parvum TS was most similar to the bifunctional TS enzymes of Plasmodium chabaudi and Plasmodium falciparum.  相似文献   
48.
DNA sequence of the filamentous bacteriophage Pf1   总被引:9,自引:0,他引:9  
  相似文献   
49.
Tumor necrosis factor α (TNFα) triggers necroptotic cell death through an intracellular signaling complex containing receptor-interacting protein kinase (RIPK) 1 and RIPK3, called the necrosome. RIPK1 phosphorylates RIPK3, which phosphorylates the pseudokinase mixed lineage kinase-domain-like (MLKL)—driving its oligomerization and membrane-disrupting necroptotic activity. Here, we show that TNF receptor-associated factor 2 (TRAF2)—previously implicated in apoptosis suppression—also inhibits necroptotic signaling by TNFα. TRAF2 disruption in mouse fibroblasts augmented TNFα–driven necrosome formation and RIPK3-MLKL association, promoting necroptosis. TRAF2 constitutively associated with MLKL, whereas TNFα reversed this via cylindromatosis-dependent TRAF2 deubiquitination. Ectopic interaction of TRAF2 and MLKL required the C-terminal portion but not the N-terminal, RING, or CIM region of TRAF2. Induced TRAF2 knockout (KO) in adult mice caused rapid lethality, in conjunction with increased hepatic necrosome assembly. By contrast, TRAF2 KO on a RIPK3 KO background caused delayed mortality, in concert with elevated intestinal caspase-8 protein and activity. Combined injection of TNFR1-Fc, Fas-Fc and DR5-Fc decoys prevented death upon TRAF2 KO. However, Fas-Fc and DR5-Fc were ineffective, whereas TNFR1-Fc and interferon α receptor (IFNAR1)-Fc were partially protective against lethality upon combined TRAF2 and RIPK3 KO. These results identify TRAF2 as an important biological suppressor of necroptosis in vitro and in vivo.Apoptotic cell death is mediated by caspases and has distinct morphological features, including membrane blebbing, cell shrinkage and nuclear fragmentation.1, 2, 3, 4 In contrast, necroptotic cell death is caspase-independent and is characterized by loss of membrane integrity, cell swelling and implosion.1, 2, 5 Nevertheless, necroptosis is a highly regulated process, requiring activation of RIPK1 and RIPK3, which form the core necrosome complex.1, 2, 5 Necrosome assembly can be induced via specific death receptors or toll-like receptors, among other modules.6, 7, 8, 9 The activated necrosome engages MLKL by RIPK3-mediated phosphorylation.6, 10, 11 MLKL then oligomerizes and binds to membrane phospholipids, forming pores that cause necroptotic cell death.10, 12, 13, 14, 15 Unchecked necroptosis disrupts embryonic development in mice and contributes to several human diseases.7, 8, 16, 17, 18, 19, 20, 21, 22The apoptotic mediators FADD, caspase-8 and cFLIP suppress necroptosis.19, 20, 21, 23, 24 Elimination of any of these genes in mice causes embryonic lethality, subverted by additional deletion of RIPK3 or MLKL.19, 20, 21, 25 Necroptosis is also regulated at the level of RIPK1. Whereas TNFα engagement of TNFR1 leads to K63-linked ubiquitination of RIPK1 by cellular inhibitor of apoptosis proteins (cIAPs) to promote nuclear factor (NF)-κB activation,26 necroptosis requires suppression or reversal of this modification to allow RIPK1 autophosphorylation and consequent RIPK3 activation.2, 23, 27, 28 CYLD promotes necroptotic signaling by deubiquitinating RIPK1, augmenting its interaction with RIPK3.29 Conversely, caspase-8-mediated CYLD cleavage inhibits necroptosis.24TRAF2 recruits cIAPs to the TNFα-TNFR1 signaling complex, facilitating NF-κB activation.30, 31, 32, 33 TRAF2 also supports K48-linked ubiquitination and proteasomal degradation of death-receptor-activated caspase-8, curbing apoptosis.34 TRAF2 KO mice display embryonic lethality; some survive through birth but have severe developmental and immune deficiencies and die prematurely.35, 36 Conditional TRAF2 KO leads to rapid intestinal inflammation and mortality.37 Furthermore, hepatic TRAF2 depletion augments apoptosis activation via Fas/CD95.34 TRAF2 attenuates necroptosis induction in vitro by the death ligands Apo2L/TRAIL and Fas/CD95L.38 However, it remains unclear whether TRAF2 regulates TNFα-induced necroptosis—and if so—how. Our present findings reveal that TRAF2 inhibits TNFα necroptotic signaling. Furthermore, our results establish TRAF2 as a biologically important necroptosis suppressor in vitro and in vivo and provide initial insight into the mechanisms underlying this function.  相似文献   
50.
Summary K+ channels in cultured rat pancreatic islet cells have been studied using patch-clamp single-channel recording techniques in cell-attached and excised inside-out and outside-out membrane patches. Three different K+-selective channels have been found. Two inward rectifier K+ channels with slope conductances of about 4 and 17 pS recorded under quasi-physiological cation gradients (Na+ outside, K+ inside) and maximal conductances recorded in symmetrical K+-rich solutions of about 30 and 75 pS, respectively. A voltage- and calcium-activated K channel was recorded with a slope conductance of about 90 pS under the same conditions and a maximal conductance recorded in symmetrical K+-rich solutions of about 250 pS. Single-channel current recording in the cell-attached conformation revealed a continuous low level of activity in an apparently small number of both the inward rectifier K+ channels. But when membrane patches were excised from the intact cell a much larger number of inward rectifier K+ channels became transiently activated before showing an irreversible decline. In excised patches opening and closing of both the inward rectifier K+ channels were unaffected by voltage, internal Ca2+ or externally applied tetraethyl-ammonium (TEA) but the probability of opening of both inward rectifier K+ channels was reduced by internally applied 1–5mm adenosine-5-triphosphate (ATP). The large K+ channel was not operational in cell-attached membrane patches, but in excised patches it could be activated at negative membrane potentials by 10–7 to 10–6 m internal Ca2+ and blocked by 5–10mm external TEA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号