首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110篇
  免费   10篇
  120篇
  2023年   1篇
  2021年   7篇
  2020年   1篇
  2019年   4篇
  2018年   4篇
  2017年   7篇
  2016年   3篇
  2015年   2篇
  2014年   5篇
  2013年   15篇
  2012年   8篇
  2011年   10篇
  2010年   7篇
  2009年   3篇
  2008年   6篇
  2007年   7篇
  2006年   1篇
  2005年   5篇
  2004年   4篇
  2003年   6篇
  2002年   5篇
  2000年   2篇
  1992年   2篇
  1991年   1篇
  1987年   2篇
  1985年   1篇
  1974年   1篇
排序方式: 共有120条查询结果,搜索用时 15 毫秒
81.
The DNA of patients taking immunosuppressive and anti-inflammatory thiopurines contains 6-thioguanine (6-TG) and their skin is hypersensitive to ultraviolet A (UVA) radiation. DNA 6-TG absorbs UVA and generates reactive oxygen species that damage DNA and proteins. Here, we show that the DNA damage includes covalent DNA-protein crosslinks. An oligonucleotide containing a single 6-TG is photochemically crosslinked to cysteine-containing oligopeptides by low doses of UVA. Crosslinking is significantly more efficient if guanine sulphonate (G(SO3))--an oxidized 6-TG and a previously identified UVA photoproduct--replaces 6-TG, suggesting that G(SO3) is an important reaction intermediate. Crosslinking occurs via oligopeptide sulphydryl and free amino groups. The oligonucleotide-oligopeptide adducts are heat stable but are partially reversed by reducing treatments. UVA irradiation of human cells containing DNA 6-TG induces extensive heat- and reducing agent-resistant covalent DNA-protein crosslinks and diminishes the recovery of some DNA repair and replication proteins from nuclear extracts. DNA-protein crosslinked material has an altered buoyant density and can be purified by banding in cesium chloride (CsCl) gradients. PCNA, the MSH2 mismatch repair protein and the XPA nucleotide excision repair (NER) factor are among the proteins detectable in the DNA-crosslinked material. These findings suggest that the 6-TG/UVA combination might compromise DNA repair by sequestering essential proteins.  相似文献   
82.
Individuals with schizophrenia tend to be heavy smokers and are at high risk for tobacco dependence. However, the nature of the comorbidity is not entirely clear. We previously reported evidence for association of schizophrenia with SNPs and SNP haplotypes in a region of chromosome 5q containing the SPEC2, PDZ-GEF2 and ACSL6 genes. In this current study, analysis of the control subjects of the Molecular Genetics of Schizophrenia (MGS) sample showed similar pattern of association with number of cigarettes smoked per day (numCIG) for the same region. To further test if this locus is associated with tobacco smoking as measured by numCIG and FTND, we conducted replication and meta-analysis in 12 independent samples (n>16,000) for two markers in ACSL6 reported in our previous schizophrenia study. In the meta-analysis of the replication samples, we found that rs667437 and rs477084 were significantly associated with numCIG (p = 0.00038 and 0.00136 respectively) but not with FTND scores. We then used in vitro and in vivo techniques to test if nicotine exposure influences the expression of ACSL6 in brain. Primary cortical culture studies showed that chronic (5-day) exposure to nicotine stimulated ACSL6 mRNA expression. Fourteen days of nicotine administration via osmotic mini pump also increased ACSL6 protein levels in the prefrontal cortex and hippocampus of mice. These increases were suppressed by injection of the nicotinic receptor antagonist mecamylamine, suggesting that elevated expression of ACSL6 requires nicotinic receptor activation. These findings suggest that variations in the ACSL6 gene may contribute to the quantity of cigarettes smoked. The independent associations of this locus with schizophrenia and with numCIG in non-schizophrenic subjects suggest that this locus may be a common liability to both conditions.  相似文献   
83.
The activity of the gamma-secretase complex is critical for the processing of a number of transmembrane proteins, including Notch. Functional gamma-secretase activity can be reconstituted from four proteins--presenilin, nicastrin, Pen-2 and Aph-1--but the role of the individual proteins remains unclear. In this report we describe the cellular localization and protein interactions of Aph-1, with particular regard to Notch receptor processing. We found that Aph-1 is present at the cell surface, where it interacts with Pen-2, the mature forms of presenilin and nicastrin, and full-length Notch. Aph-1 also interacts with a truncated form of Notch, which is a direct substrate for gamma-secretase, but not with the Notch intracellular domain. Immunoprecipitation data for Notch and Aph-1 showed that the Notch-containing gamma-secretase complexes most likely form a small subset of the total number of gamma-secretase complexes. In conclusion, these data demonstrate that Aph-1 is present at the cell surface, presumably in active gamma-secretase complexes, and interacts with the Notch receptor, both before and after ligand activation.  相似文献   
84.
85.
Previous studies have shown that functional 5-HT1A receptors are present in the cerebellum only for the early postnatal period in rats. In order to investigate further the possible physiological significance of such a transient expression of 5-HT1A receptors during maturation of the cerebellum, anatomical studies were performed for identifying which cell type(s) are endowed with these receptors in 8-day-old rats. Autoradiography (using [125I]BH-8-MeO-N-PAT) with dry films and emulsion-coated coverslips, and radioimmunohistochemistry (using specific polyclonal anti-5-HT1A receptor antibodies) of vermis sections revealed that 5-HT1A receptors were mainly concentrated in the molecular layer of the anterior part of the lobule X and the posterior part of the lobule IXB. X-Irradiation on the 5th postnatal day yielded an agranular cerebellum whose density of 5-HT1A sites was higher than that in age-paired control animals. These data indicate that 5-HT1A receptors are not located on granule cells, but probably on glial cells in the molecular layer of the immature cerebellum. This location further supports the possible implication of glial 5-HT1A receptors in some trophic action of 5-HT during CNS maturation.  相似文献   
86.
Echinococcus granulosus sensu stricto (s.s.) is the major cause of human cystic echinococcosis worldwide and is listed among the most severe parasitic diseases of humans. To date, numerous studies have investigated the genetic diversity and population structure of E. granulosus s.s. in various geographic regions. However, there has been no global study. Recently, using mitochondrial DNA, it was shown that E. granulosus s.s. G1 and G3 are distinct genotypes, but a larger dataset is required to confirm the distinction of these genotypes. The objectives of this study were to: (i) investigate the distinction of genotypes G1 and G3 using a large global dataset; and (ii) analyse the genetic diversity and phylogeography of genotype G1 on a global scale using near-complete mitogenome sequences. For this study, 222 globally distributed E. granulosus s.s. samples were used, of which 212 belonged to genotype G1 and 10 to G3. Using a total sequence length of 11,682?bp, we inferred phylogenetic networks for three datasets: E. granulosus s.s. (n?=?222), G1 (n?=?212) and human G1 samples (n?=?41). In addition, the Bayesian phylogenetic and phylogeographic analyses were performed. The latter yielded several strongly supported diffusion routes of genotype G1 originating from Turkey, Tunisia and Argentina. We conclude that: (i) using a considerably larger dataset than employed previously, E. granulosus s.s. G1 and G3 are indeed distinct mitochondrial genotypes; (ii) the genetic diversity of E. granulosus s.s. G1 is high globally, with lower values in South America; and (iii) the complex phylogeographic patterns emerging from the phylogenetic and geographic analyses suggest that the current distribution of genotype G1 has been shaped by intensive animal trade.  相似文献   
87.
88.
Circular Dichroism (CD) spectroscopy is a powerful method for investigating conformational changes in proteins and therefore has numerous applications in structural and molecular biology. Here a computational investigation of the CD spectrum of the Human Carbonic Anhydrase II (HCAII), with main focus on the near-UV CD spectra of the wild-type enzyme and it seven tryptophan mutant forms, is presented and compared to experimental studies. Multilevel computational methods (Molecular Dynamics, Semiempirical Quantum Mechanics, Time-Dependent Density Functional Theory) were applied in order to gain insight into the mechanisms of interaction between the aromatic chromophores within the protein environment and understand how the conformational flexibility of the protein influences these mechanisms. The analysis suggests that combining CD semi empirical calculations, crystal structures and molecular dynamics (MD) could help in achieving a better agreement between the computed and experimental protein spectra and provide some unique insight into the dynamic nature of the mechanisms of chromophore interactions.  相似文献   
89.
Alzheimer’s disease (AD) is an unremitting neurodegenerative disorder characterized by cerebral amyloid-β (Aβ) accumulation and gradual decline in cognitive function. Changes in brain energy metabolism arise in the preclinical phase of AD, suggesting an important metabolic component of early AD pathology. Neurons and astrocytes function in close metabolic collaboration, which is essential for the recycling of neurotransmitters in the synapse. However, this crucial metabolic interplay during the early stages of AD development has not been sufficiently investigated. Here, we provide an integrative analysis of cellular metabolism during the early stages of Aβ accumulation in the cerebral cortex and hippocampus of the 5xFAD mouse model of AD. Our electrophysiological examination revealed an increase in spontaneous excitatory signaling in the 5xFAD hippocampus. This hyperactive neuronal phenotype coincided with decreased hippocampal tricarboxylic acid (TCA) cycle metabolism mapped by stable 13C isotope tracing. Particularly, reduced astrocyte TCA cycle activity and decreased glutamine synthesis led to hampered neuronal GABA synthesis in the 5xFAD hippocampus. In contrast, the cerebral cortex of 5xFAD mice displayed an elevated capacity for oxidative glucose metabolism, which may suggest a metabolic compensation in this brain region. We found limited changes when we explored the brain proteome and metabolome of the 5xFAD mice, supporting that the functional metabolic disturbances between neurons and astrocytes are early primary events in AD pathology. In addition, synaptic mitochondrial and glycolytic function was selectively impaired in the 5xFAD hippocampus, whereas non-synaptic mitochondrial function was maintained. These findings were supported by ultrastructural analyses demonstrating disruptions in mitochondrial morphology, particularly in the 5xFAD hippocampus. Collectively, our study reveals complex regional and cell-specific metabolic adaptations in the early stages of amyloid pathology, which may be fundamental for the progressing synaptic dysfunctions in AD.Subject terms: Proteomics, Alzheimer''s disease, Molecular neuroscience, Alzheimer''s disease  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号