首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   525篇
  免费   50篇
  2023年   2篇
  2022年   6篇
  2021年   10篇
  2020年   10篇
  2019年   14篇
  2018年   20篇
  2017年   16篇
  2016年   21篇
  2015年   27篇
  2014年   23篇
  2013年   36篇
  2012年   35篇
  2011年   32篇
  2010年   29篇
  2009年   14篇
  2008年   19篇
  2007年   29篇
  2006年   21篇
  2005年   17篇
  2004年   20篇
  2003年   21篇
  2002年   9篇
  2001年   12篇
  2000年   15篇
  1999年   14篇
  1998年   9篇
  1997年   8篇
  1995年   4篇
  1994年   5篇
  1992年   7篇
  1991年   2篇
  1990年   5篇
  1989年   3篇
  1988年   3篇
  1987年   4篇
  1986年   6篇
  1985年   2篇
  1984年   2篇
  1983年   3篇
  1981年   2篇
  1980年   2篇
  1979年   5篇
  1977年   3篇
  1976年   4篇
  1975年   2篇
  1974年   4篇
  1973年   3篇
  1970年   3篇
  1968年   4篇
  1957年   1篇
排序方式: 共有575条查询结果,搜索用时 46 毫秒
101.
Anterior leaflet (AL) stiffening during isovolumic contraction (IVC) may aid mitral valve closure. We tested the hypothesis that AL stiffening requires atrial depolarization. Ten sheep had radioopaque-marker arrays implanted in the left ventricle, mitral annulus, AL, and papillary muscle tips. Four-dimensional marker coordinates (x, y, z, and t) were obtained from biplane videofluoroscopy at baseline (control, CTRL) and during basal interventricular-septal pacing (no atrial contraction, NAC; 110-117 beats/min) to generate ventricular depolarization not preceded by atrial depolarization. Circumferential and radial stiffness values, reflecting force generation in three leaflet regions (annular, belly, and free-edge), were obtained from finite-element analysis of AL displacements in response to transleaflet pressure changes during both IVC and isovolumic relaxation (IVR). In CTRL, IVC circumferential and radial stiffness was 46 ± 6% greater than IVR stiffness in all regions (P < 0.001). In NAC, AL annular IVC stiffness decreased by 25% (P = 0.004) in the circumferential and 31% (P = 0.005) in the radial directions relative to CTRL, without affecting edge stiffness. Thus AL annular stiffening during IVC was abolished when atrial depolarization did not precede ventricular systole, in support of the hypothesis. The likely mechanism underlying AL annular stiffening during IVC is contraction of cardiac muscle that extends into the leaflet and requires atrial excitation. The AL edge has no cardiac muscle, and thus IVC AL edge stiffness was not affected by loss of atrial depolarization. These findings suggest one reason why heart block, atrial dysrhythmias, or ventricular pacing may be accompanied by mitral regurgitation or may worsen regurgitation when already present.  相似文献   
102.
Polo-like kinases (Plks) are characterized by the presence of a specific domain, known as the polo box (PBD), involved in protein-protein interactions. Plk1 to Plk4 are involved in centrosome biology as well as the regulation of mitosis, cytokinesis, and cell cycle checkpoints in response to genotoxic stress. We have analyzed here the new member of the vertebrate family, Plk5, a protein that lacks the kinase domain in humans. Plk5 does not seem to have a role in cell cycle progression; in fact, it is downregulated in proliferating cells and accumulates in quiescent cells. This protein is mostly expressed in the brain of both mice and humans, and it modulates the formation of neuritic processes upon stimulation of the brain-derived neurotrophic factor (BDNF)/nerve growth factor (NGF)-Ras pathway in neurons. The human PLK5 gene is significantly silenced in astrocytoma and glioblastoma multiforme by promoter hypermethylation, suggesting a tumor suppressor function for this gene. Indeed, overexpression of Plk5 has potent apoptotic effects in these tumor cells. Thus, Plk5 seems to have evolved as a kinase-deficient PBD-containing protein with nervous system-specific functions and tumor suppressor activity in brain cancer.  相似文献   
103.
Base composition varies among and within eukaryote genomes. Although mutational bias and selection have initially been invoked, more recently GC-biased gene conversion (gBGC) has been proposed to play a central role in shaping nucleotide landscapes, especially in yeast, mammals, and birds. gBGC is a kind of meiotic drive in favor of G and C alleles, associated with recombination. Previous studies have also suggested that gBGC could be at work in grass genomes. However, these studies were carried on third codon positions that can undergo selection on codon usage. As most preferred codons end in G or C in grasses, gBGC and selection can be confounded. Here we investigated further the forces that might drive GC content evolution in the rice genus using both coding and noncoding sequences. We found that recombination rates correlate positively with equilibrium GC content and that selfing species (Oryza sativa and O. glaberrima) have significantly lower equilibrium GC content compared with more outcrossing species. As recombination is less efficient in selfing species, these results suggest that recombination drives GC content. We also detected a positive relationship between expression levels and GC content in third codon positions, suggesting that selection favors codons ending with G or C bases. However, the correlation between GC content and recombination cannot be explained by selection on codon usage alone as it was also observed in noncoding positions. Finally, analyses of polymorphism data ruled out the hypothesis that genomic variation in GC content is due to mutational processes. Our results suggest that both gBGC and selection on codon usage affect GC content in the Oryza genus and likely in other grass species.  相似文献   
104.
105.
Individual differences in cognitive performance are partly dependent, on genetic polymporhisms. One of the single‐nucleotide polymorphisms (SNP) of the CNR1 gene, which codes for cannabinoid receptor 1 (CB1R), is the rs2180619, located in a regulatory region of this gene (6q14–q15). The alleles of the rs2180619 are A > G; the G allele has been associated with addiction and high levels of anxiety (when the G allele interacts with the SS genotype of the 5‐HTTLPR gene). However, GG genotype is observed also in healthy subjects. Considering G allele as risk for ‘psychopathological conditions’, it is possible that GG healthy subjects do not be addicted or anxious, but would have reduced performance, compared to AA subjects, in attentional control and working memory processing. One hundred and sixty‐four healthy young Mexican‐Mestizo subjects (100 women and 64, men; mean age: 22.86 years, SD=2.72) participated in this study, solving a task where attentional control and working memory were required. GG subjects, compared to AA subjects showed: (1) a general lower performance in the task (P = 0.02); (2) lower performance only when a high load of information was held in working memory (P = 0.02); and (3) a higher vulnerability to distractors (P = 0.03). Our results suggest that, although the performance of GG subjects was at normal levels, a lower efficiency of the endocannabinoid system, probably due to a lowered expression of CB1R, produced a reduction in the performance of these subjects when attentional control and working memory processing is challenged .  相似文献   
106.
The assessment of oxidative stress is highly relevant in clinical Perinatology as it is associated to adverse outcomes in newborn infants. This study summarizes results from the validation of an Ultra Performance Liquid Chromatography–tandem Mass Spectrometry (UPLC-MS/MS) method for the simultaneous quantification of the urinary concentrations of a set of endogenous biomarkers, capable to provide a valid snapshot of the oxidative stress status applicable in human clinical trials, especially in the field of Perinatology. The set of analytes included are phenylalanine (Phe), para-tyrosine (p-Tyr), ortho-tyrosine (o-Tyr), meta-tyrosine (m-Tyr), 3-NO2-tyrosine (3NO2-Tyr), 3-Cl-tyrosine (3Cl-Tyr), 2′-deoxyguanosine (2dG) and 8-hydroxy-2′-deoxyguanosine (8OHdG). Following the FDA-based guidelines, appropriate levels of accuracy and precision, as well as adequate levels of sensitivity with limits of detection (LODs) in the low nanomolar (nmol/L) range were confirmed after method validation. The validity of the proposed UPLC-MS/MS method was assessed by analysing urine samples from a clinical trial in extremely low birth weight (ELBW) infants randomized to be resuscitated with two different initial inspiratory fractions of oxygen.  相似文献   
107.
Purine nucleotides can be fully catabolized by plants to recycle nutrients. We have isolated a urate oxidase (uox) mutant of Arabidopsis thaliana that accumulates uric acid in all tissues, especially in the developing embryo. The mutant displays a reduced germination rate and is unable to establish autotrophic growth due to severe inhibition of cotyledon development and nutrient mobilization from the lipid reserves in the cotyledons. The uox mutant phenotype is suppressed in a xanthine dehydrogenase (xdh) uox double mutant, demonstrating that the underlying cause is not the defective purine base catabolism, or the lack of UOX per se, but the elevated uric acid concentration in the embryo. Remarkably, xanthine accumulates to similar levels in the xdh mutant without toxicity. This is paralleled in humans, where hyperuricemia is associated with many diseases whereas xanthinuria is asymptomatic. Searching for the molecular cause of uric acid toxicity, we discovered a local defect of peroxisomes (glyoxysomes) mostly confined to the cotyledons of the mature embryos, which resulted in the accumulation of free fatty acids in dry seeds. The peroxisomal defect explains the developmental phenotypes of the uox mutant, drawing a novel link between uric acid and peroxisome function, which may be relevant beyond plants.  相似文献   
108.
109.
There is a growing interest in biomedical engineering in developing procedures that provide accurate simulations of the neural response to electrical stimulus produced by implants. Moreover, recent research focuses on models that take into account individual patient characteristics.We present a phenomenological computational model that is customized with the patient’s data provided by the electrically evoked compound action potential (ECAP) for simulating the neural response to electrical stimulus produced by the electrodes of cochlear implants (CIs). The model links the input currents of the electrodes to the simulated ECAP.Potentials and currents are calculated by solving the quasi-static approximation of the Maxwell equations with the finite element method (FEM). In ECAPs recording, an active electrode generates a current that elicits action potentials in the surrounding auditory nerve fibers (ANFs). The sum of these action potentials is registered by other nearby electrode. Our computational model emulates this phenomenon introducing a set of line current sources replacing the ANFs by a set of virtual neurons (VNs). To fit the ECAP amplitudes we assign a suitable weight to each VN related with the probability of an ANF to be excited. This probability is expressed by a cumulative beta distribution parameterized by two shape parameters that are calculated by means of a differential evolution algorithm (DE). Being the weights function of the current density, any change in the design of the CI affecting the current density produces changes in the weights and, therefore, in the simulated ECAP, which confers to our model a predictive capacity.The results of the validation with ECAP data from two patients are presented, achieving a satisfactory fit of the experimental data with those provided by the proposed computational model.  相似文献   
110.
Heparan sulfate proteoglycans (HSPGs) interact with numerous proteins of importance in animal development and homeostasis. Heparanase, which is expressed in normal tissues and upregulated in angiogenesis, cancer and inflammation, selectively cleaves beta-glucuronidic linkages in HS chains. In a previous study, we transgenically overexpressed heparanase in mice to assess the overall effects of heparanase on HS metabolism. Metabolic labeling confirmed extensive fragmentation of HS in vivo. In the current study we found that in liver showing excessive heparanase overexpression, HSPG turnover is accelerated along with upregulation of HS N- and O-sulfation, thus yielding heparin-like chains without the domain structure typical of HS. Heparanase overexpression in other mouse organs and in human tumors correlated with increased 6-O-sulfation of HS, whereas the domain structure was conserved. The heavily sulfated HS fragments strongly promoted formation of ternary complexes with fibroblast growth factor 1 (FGF1) or FGF2 and FGF receptor 1. Heparanase thus contributes to regulation of HS biosynthesis in a way that may promote growth factor action in tumor angiogenesis and metastasis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号