首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89篇
  免费   4篇
  国内免费   1篇
  94篇
  2022年   1篇
  2021年   1篇
  2018年   1篇
  2016年   1篇
  2015年   5篇
  2014年   3篇
  2013年   3篇
  2012年   8篇
  2011年   5篇
  2010年   6篇
  2009年   8篇
  2008年   3篇
  2007年   4篇
  2006年   6篇
  2005年   2篇
  2004年   4篇
  2003年   2篇
  2002年   1篇
  2001年   7篇
  2000年   3篇
  1999年   2篇
  1998年   2篇
  1993年   2篇
  1988年   1篇
  1985年   2篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1969年   1篇
排序方式: 共有94条查询结果,搜索用时 15 毫秒
81.

Background

The theory of genomic selection is based on the prediction of the effects of quantitative trait loci (QTL) in linkage disequilibrium (LD) with markers. However, there is increasing evidence that genomic selection also relies on "relationships" between individuals to accurately predict genetic values. Therefore, a better understanding of what genomic selection actually predicts is relevant so that appropriate methods of analysis are used in genomic evaluations.

Methods

Simulation was used to compare the performance of estimates of breeding values based on pedigree relationships (Best Linear Unbiased Prediction, BLUP), genomic relationships (gBLUP), and based on a Bayesian variable selection model (Bayes B) to estimate breeding values under a range of different underlying models of genetic variation. The effects of different marker densities and varying animal relationships were also examined.

Results

This study shows that genomic selection methods can predict a proportion of the additive genetic value when genetic variation is controlled by common quantitative trait loci (QTL model), rare loci (rare variant model), all loci (infinitesimal model) and a random association (a polygenic model). The Bayes B method was able to estimate breeding values more accurately than gBLUP under the QTL and rare variant models, for the alternative marker densities and reference populations. The Bayes B and gBLUP methods had similar accuracies under the infinitesimal model.

Conclusions

Our results suggest that Bayes B is superior to gBLUP to estimate breeding values from genomic data. The underlying model of genetic variation greatly affects the predictive ability of genomic selection methods, and the superiority of Bayes B over gBLUP is highly dependent on the presence of large QTL effects. The use of SNP sequence data will outperform the less dense marker panels. However, the size and distribution of QTL effects and the size of reference populations still greatly influence the effectiveness of using sequence data for genomic prediction.  相似文献   
82.

Background

Chagas disease is due to the parasite Trypanosoma cruzi, a protist disseminated by a Triatome vector. This disease is endemic to Latin America and considered by WHO as one of the 17 world’s neglected diseases. In Europe and in North America, imported cases are also detected, due to migration of population outside of the endemic region. Diagnosis of T. cruzi infection is usually made indirectly by the detection of specific antibodies to T. cruzi antigens. Following initial diagnostic evaluation or screening test (qualifying or discarding blood donation), a confirmation test is performed for samples initially reactive. The test presented in this study aims at the confirmation/refutation of the infectious status of human blood samples and will permit taking appropriate clinical measures.

Methodology/Principal Findings

We designed a novel array of twelve antigens and printed these antigens onto 96-well plates. We tested 248 positive samples T. cruzi, 94 unscreened blood donors’ samples from non-endemic area, 49 seronegative blood donors, 7 false-positive and 3 doubtful samples. The observed reactivities were analyzed to propose a decision-tree algorithm that correctly classifies all the samples, with the potential to discriminate false-positive results and sticky samples. We observed that antibodies levels (Sum of all antigens) was significantly higher for PCR positive than for PCR negative samples in all studied groups with Multi-cruzi.

Conclusion/Significance

The results described in this study indicate that the Multi-cruzi improves the serological confirmation of Chagas disease. Moreover the “sum of all antigens” detected by Multi-cruzi could reflect parasitemia level in patients–like PCR signals does—and could serve as an indicator of parasite clearance in longitudinal follow-ups. Validation of this assay is still required on an independent large collection of well characterized samples including typical false-reactive samples such as Leishmaniasis.  相似文献   
83.

Objective

Develop and validate particular, concrete, and abstract yet plausible in silico mechanistic explanations for large intra- and interindividual variability observed for eleven bioequivalence study participants. Do so in the face of considerable uncertainty about mechanisms.

Methods

We constructed an object-oriented, discrete event model called subject (we use small caps to distinguish computational objects from their biological counterparts). It maps abstractly to a dissolution test system and study subject to whom product was administered orally. A subject comprises four interconnected grid spaces and event mechanisms that map to different physiological features and processes. Drugs move within and between spaces. We followed an established, Iterative Refinement Protocol. Individualized mechanisms were made sufficiently complicated to achieve prespecified Similarity Criteria, but no more so. Within subjects, the dissolution space is linked to both a product-subject Interaction Space and the GI tract. The GI tract and Interaction Space connect to plasma, from which drug is eliminated.

Results

We discovered parameterizations that enabled the eleven subject simulation results to achieve the most stringent Similarity Criteria. Simulated profiles closely resembled those with normal, odd, and double peaks. We observed important subject-by-formulation interactions within subjects.

Conclusion

We hypothesize that there were interactions within bioequivalence study participants corresponding to the subject-by-formulation interactions within subjects. Further progress requires methods to transition currently abstract subject mechanisms iteratively and parsimoniously to be more physiologically realistic. As that objective is achieved, the approach presented is expected to become beneficial to drug development (e.g., controlled release) and to a reduction in the number of subjects needed per study plus faster regulatory review.
  相似文献   
84.
Thirty-three dairy farms in the Norwegian counties of ?stfold and Akershus in which cubicle sheds had been in use for at least one year and with a herd size of less than 60 cows, were contacted and asked to participate in a study. The study focused on heifers' use of cubicles and concentrate dispenser just after being transferred from rearing accommodation to the milking herd. For each heifer, the farmer recorded cubicle use once nightly between 9 and 11 pm. The daily amount of concentrate released in the dispenser and the allotted daily ration were also recorded. The recording period was 15 consecutive days for cubicle use and 7 days for concentrate dispenser use. Cubicle refusal behaviour, i.e. lying outside the cubicles, was analysed by logistic regression using rearing accommodation of heifers, herd size, heifer age, and housing layout as independent variables, and herd as a clustering variable. On Day 2 after transfer, 34% of the heifers were showing cubicle refusal behaviour (N = 340). By Day 15 this percentage had dropped to 23. Cubicle refusal was lower throughout the whole period among heifers which used the cubicles on the 3 first days after transfer compared to those which did not. This tendency could also be detected several months later. The analysis showed cubicle refusal to be significantly associated with rearing accommodation (OR = 6.1, c.i.95%OR = 1.5–24.3, P = 0.01) and cubicle layout in the shed (OR = 0.2, c.i.95%OR = 0.0–0.7, P = 0.01). None of the tested variables were found to be significant for failure to use the concentrate dispenser, a behaviour which was less frequent than cubicle refusal. However, 8 percent of the heifers did not visit the dispenser at all throughout the 7 days of observation.  相似文献   
85.
A novel method, single-molecule anisotropy imaging, has been employed to simultaneously study lateral and rotational diffusion of fluorescence-labeled lipids on supported phospholipid membranes. In a fluid membrane composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, in which the rotational diffusion time is on the order of the excited-state lifetime of the fluorophore rhodamine, a rotational diffusion constant, D(rot) = 7 x 10(7) rad(2)/s, was determined. The lateral diffusion constant, measured by direct analysis of single-molecule trajectories, was D(lat) = 3.5 x 10(-8) cm(2)/s. As predicted from the free-volume model for diffusion, the results exhibit a significantly enhanced mobility on the nanosecond time scale. For membranes of DPPC lipids in the L(beta) gel phase, the slow rotational mobility permitted the direct observation of the rotation of individual molecules characterized by D(rot) = 1.2 rad(2)/s. The latter data were evaluated by a mean square angular displacement analysis. The technique developed here should prove itself profitable for imaging of conformational motions of individual proteins on the time scale of milliseconds to seconds.  相似文献   
86.
Accelerated solvent extraction (ASE) is an alternative sample extraction procedure for fumonisins in corn and corn products. ASE gave results comparable to that of a draft CEN method, but required less extraction time. Furthermore, ASE gave significantly higher quantitative values than another method reported for extraction of fumonisins (Trucksess et al., 1995).  相似文献   
87.

Background

Active magnetic resonance imaging implants, for example stents, stent grafts or vena cava filters, are constructed as wireless inductively coupled transmit and receive coils. They are built as a resonator tuned to the Larmor frequency of a magnetic resonance system. The resonator can be added to or incorporated within the implant. This technology can counteract the shielding caused by eddy currents inside the metallic implant structure. This may allow getting diagnostic information of the implant lumen (in stent stenosis or thrombosis for example). The electro magnetic rf-pulses during magnetic resonance imaging induce a current in the circuit path of the resonator. A by material fatigue provoked partial rupture of the circuit path or a broken wire with touching surfaces can set up a relatively high resistance on a very short distance, which may behave as a point-like power source, a hot spot, inside the body part the resonator is implanted to. This local power loss inside a small volume can reach ¼ of the total power loss of the intact resonating circuit, which itself is proportional to the product of the resonator volume and the quality factor and depends as well from the orientation of the resonator with respect to the main magnetic field and the imaging sequence the resonator is exposed to.

Methods

First an analytical solution of a hot spot for thermal equilibrium is described. This analytical solution with a definite hot spot power loss represents the worst case scenario for thermal equilibrium inside a homogeneous medium without cooling effects. Starting with this worst case assumptions additional conditions are considered in a numerical simulation, which are more realistic and may make the results less critical. The analytical solution as well as the numerical simulations use the experimental experience of the maximum hot spot power loss of implanted resonators with a definite volume during magnetic resonance imaging investigations. The finite volume analysis calculates the time developing temperature maps for the model of a broken linear metallic wire embedded in tissue. Half of the total hot spot power loss is assumed to diffuse into both wire parts at the location of a defect. The energy is distributed from there by heat conduction. Additionally the effect of blood perfusion and blood flow is respected in some simulations because the simultaneous appearance of all worst case conditions, especially the absence of blood perfusion and blood flow near the hot spot, is very unlikely for vessel implants.

Results

The analytical solution as worst case scenario as well as the finite volume analysis for near worst case situations show not negligible volumes with critical temperature increases for part of the modeled hot spot situations. MR investigations with a high rf-pulse density lasting below a minute can establish volumes of several cubic millimeters with temperature increases high enough to start cell destruction. Longer exposure times can involve volumes larger than 100 mm3. Even temperature increases in the range of thermal ablation are reached for substantial volumes. MR sequence exposure time and hot spot power loss are the primary factors influencing the volume with critical temperature increases. Wire radius, wire material as well as the physiological parameters blood perfusion and blood flow inside larger vessels reduce the volume with critical temperature increases, but do not exclude a volume with critical tissue heating for resonators with a large product of resonator volume and quality factor.

Conclusion

The worst case scenario assumes thermal equilibrium for a hot spot embedded in homogeneous tissue without any cooling due to blood perfusion or flow. The finite volume analysis can calculate the results for near and not close to worst case conditions. For both cases a substantial volume can reach a critical temperature increase in a short time. The analytical solution, as absolute worst case, points out that resonators with a small product of inductance volume and quality factor (Q Vind < 2 cm3) are definitely save. Stents for coronary vessels or resonators used as tracking devices for interventional procedures therefore have no risk of high temperature increases. The finite volume analysis shows for sure that also conditions not close to the worst case reach physiologically critical temperature increases for implants with a large product of inductance volume and quality factor (Q Vind > 10 cm3). Such resonators exclude patients from exactly the MRI investigation these devices are made for.  相似文献   
88.
As an alternative to pharmacological treatment to diseases, lifestyle interventions, such as dietary changes and physical activities, can help maintain healthy metabolic conditions. Recently, the emerging analyses of volatile organic compounds (VOCs) from breath and short-chain fatty acids (SCFAs) from plasma/feces have been considered as useful tools for the diagnosis and mechanistic understanding of metabolic diseases. Furthermore, diet-induced changes of SCFAs in individuals with diagnosed metabolic abnormalities have been correlated with the composition changes of the gut microbiome. More interestingly, the analysis of exhaled breath (breathomics) has gained attention as a useful technique to measure the human VOC profile altered as a result of dietary interventions. In this mini-review, we examined recent clinical trials that performed promising dietary interventions, SCFAs analysis in plasma/feces, and VOC profile analysis in exhaling breath to understand the relationship between dietary intervention and metabolic health.  相似文献   
89.
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号