首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   400篇
  免费   15篇
  国内免费   2篇
  2022年   4篇
  2021年   14篇
  2020年   4篇
  2018年   4篇
  2017年   6篇
  2016年   10篇
  2015年   15篇
  2014年   16篇
  2013年   30篇
  2012年   22篇
  2011年   27篇
  2010年   11篇
  2009年   15篇
  2008年   16篇
  2007年   21篇
  2006年   13篇
  2005年   25篇
  2004年   16篇
  2003年   19篇
  2002年   12篇
  2001年   11篇
  2000年   8篇
  1999年   6篇
  1998年   4篇
  1996年   4篇
  1994年   1篇
  1993年   3篇
  1992年   7篇
  1991年   5篇
  1990年   6篇
  1989年   6篇
  1987年   5篇
  1986年   6篇
  1985年   8篇
  1984年   4篇
  1983年   6篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
  1973年   3篇
  1968年   1篇
  1967年   1篇
  1965年   1篇
  1964年   2篇
排序方式: 共有417条查询结果,搜索用时 390 毫秒
71.

Background

The presence of anti-endothelial cell antibodies and pathogenic T cells may reflect an autoimmune component in the pathogenesis of emphysema. Whether immune modulatory strategies can protect against the development of emphysema is not known.

Methods

Sprague Dawley rats were immunized with human umbilical vein endothelial cells (HUVEC) to induce autoimmune emphysema and treated with intrathymic HUVEC-injection and pristane. Measurements of alveolar airspace enlargement, cytokine levels, immuno histochemical, western blot analysis, and T cell repertoire of the lung tissue were performed.

Results

The immunomodulatory strategies protected lungs against cell death as demonstrated by reduced numbers of TUNEL and active caspase-3 positive cells and reduced levels of active caspase-3, when compared with lungs from HUVEC-immunized rats. Immunomodulatory strategies also suppressed anti-endothelial antibody production and preserved CNTF, IL-1alpha and VEGF levels. The immune deviation effects of the intrathymic HUVEC-injection were associated with an expansion of CD4+CD25+Foxp3+ regulatory T cells. Pristane treatment decreased the proportion of T cells expressing receptor beta-chain, Vβ16.1 in the lung tissue.

Conclusions

Our data demonstrate that interventions classically employed to induce central T cell tolerance (thymic inoculation of antigen) or to activate innate immune responses (pristane treatment) can prevent the development of autoimmune emphysema.  相似文献   
72.
Subendothelial retention of lipoproteins by proteoglycans (PGs) is the initiating event in atherosclerosis. The elongation of chondroitin sulfate (CS) chains is associated with increased low-density lipoprotein (LDL) binding and progression of atherosclerosis. Recently, it has been shown that 2 Golgi enzymes, chondroitin 4-O-sulfotransferase-1 (C4ST-1) and chondroitin N-acetylgalactosaminyltransferase-2 (ChGn-2), play a critical role in CS chain elongation. However, the roles of C4ST-1 and ChGn-2 during the progression of atherosclerosis are not known. The aim of this study was to analyze the expression of C4ST-1 and ChGn-2 in atherosclerotic lesions in vivo and determine whether their expression correlated with CS chain elongation.Low-density lipoprotein receptor knockout (LDLr KO) mice were fed a western diet for 2, 4, and 8 weeks to stimulate development of atherosclerosis. The binding of LDL and CS PG in this mouse model was confirmed by chondroitinase ABC (ChABC) digestion and apolipoprotein B (apo B) staining. Gel filtration analysis revealed that the CS chains began to elongate as early as 2 weeks after beginning a western diet and continued as the atherosclerosis progressed. Furthermore, quantitative real-time polymerase chain reaction (qRT-PCR) showed that the mRNA levels of C4ST-1 and ChGn-2 increased after 8 weeks of this diet. In contrast, the mRNA levels of their homologs, C4ST-2 and ChGn-1, were unchanged. In addition, immunohistochemical analysis demonstrated that the expression of C4ST-1 and ChGn-2 appeared to have similar site-specific patterns and coincided with biglycan expression at the aortic root.Our results suggested that C4ST-1 and ChGn-2 may be involved in the elongation of CS chains in the arterial wall during the progression of atherosclerosis. Therefore, modulating their expression and activity might be a novel therapeutic strategy for atherosclerosis.  相似文献   
73.
Six different cathelicidin-derived peptides were compared to tobramycin for antibacterial and anti-biofilm effects against S. aureus, P. aeruginosa, and S. maltophilia strains isolated from cystic fibrosis patients. Overall, SMAP-29, BMAP-28, and BMAP-27 showed relevant antibacterial activity (MIC50 4-8 μg/ml), and in some cases higher than tobramycin. In contrast, indolicidin, LL-37, and Bac7(1-35) showed no significant antimicrobial activity (MIC50 > 32 μg/ml). Killing kinetics experiments showed that in contrast to tobramycin the active cathelicidin peptides exert a rapid bactericidal activity regardless of the species tested. All three peptides significantly reduced biofilm formation by S. maltophilia and P. aeruginosa strains at 1/2× MIC, although at a lower extent than tobramycin. In addition, BMAP-28, as well as tobramycin, was also active against S. aureus biofilm formation. Preformed biofilms were significantly affected by bactericidal SMAP-29, BMAP-27 and BMAP-28 concentrations, although at a lesser extent than tobramycin. Overall, our results indicate the potential of some cathelicidin-derived peptides for the development of novel therapeutic agents for cystic fibrosis lung disease.  相似文献   
74.
The use of non-mammalian model organisms, including yeast Saccharomyces cerevisiae, can provide new insights into eukaryotic PCD (programmed cell death) pathways. In the present paper, we report recent achievements in the elucidation of the events leading to PCD that occur as a response to yeast treatment with AA (acetic acid). In particular, ROS (reactive oxygen species) generation, cyt c (cytochrome c) release and mitochondrial function and proteolytic activity will be dealt with as they vary along the AA-PCD time course by using both wild-type and mutant yeast cells. Two AA-PCD pathways are described sharing common features, but distinct from one another with respect to the role of ROS and mitochondria, the former in which YCA1 acts upstream of cyt c release and caspase-like activation in a ROS-dependent manner and the latter in which cyt c release does not occur, but caspase-like activity increases, in a ROS-independent manner.  相似文献   
75.
Palytoxin (PTX) is classified as one of the most powerful marine biotoxins (of high molecular weight and no protein origin) because it is able to interact strongly with important cellular structures influencing their function in different biological processes. This study of the effects of PTX on red blood cells (RBC) extends the knowledge about its toxicity, which concerns not only the well-known action on Na(+)/K(+)-ATPase but also band 3 protein (B3 or AE1), the role of which is essential for anion transport and for the structure, function, and metabolic integrity of the erythrocyte. The effects of PTX on RBC can be summarized as follows: it alters the anionic flux and seriously compromises not only CO(2) transport but also the metabolic modulation centered on the oxy-deoxy cycle of hemoglobin; it stabilizes the plasma membrane by preventing lipid peroxidation; and its effect does not lead to activation of caspases 3 and 8. From what is reported in steps 2 and 3, and on the basis of the results obtained on hemolysis, methemoglobin levels, and phosphatase activity, an increase of the reducing power of the erythrocytes (RBC) in the presence of PTX clearly emerges. The results have enabled us to outline some metabolic adaptations induced in the RBC by PTX.  相似文献   
76.
Endothelial dysfunction leads to lethal vascular complications in diabetes and related metabolic disorders. Here, we demonstrate that de novo lipogenesis, an insulin-dependent process driven by the multifunctional enzyme fatty-acid synthase (FAS), maintains endothelial function by targeting endothelial nitric-oxide synthase (eNOS) to the plasma membrane. In mice with endothelial inactivation of FAS (FASTie mice), eNOS membrane content and activity were decreased. eNOS and FAS were physically associated; eNOS palmitoylation was decreased in FAS-deficient cells, and incorporation of labeled carbon into eNOS-associated palmitate was FAS-dependent. FASTie mice manifested a proinflammatory state reflected as increases in vascular permeability, endothelial inflammatory markers, leukocyte migration, and susceptibility to LPS-induced death that was reversed with an NO donor. FAS-deficient endothelial cells showed deficient migratory capacity, and angiogenesis was decreased in FASTie mice subjected to hindlimb ischemia. Insulin induced FAS in endothelial cells freshly isolated from humans, and eNOS palmitoylation was decreased in mice with insulin-deficient or insulin-resistant diabetes. Thus, disrupting eNOS bioavailability through impaired lipogenesis identifies a novel mechanism coordinating nutritional status and tissue repair that may contribute to diabetic vascular disease.  相似文献   
77.
A new nonlinear constitutive model for the three-dimensional stress relaxation of articular ligaments is proposed. The model accounts for finite strains, anisotropy, and strain-dependent stress relaxation behavior exhibited by these ligaments. The model parameters are identified using published uniaxial stress–stretch and stress relaxation data on human medial collateral ligaments (MCLs) subjected to tensile tests in the fiber and transverse to the fiber directions (Quapp and Weiss in J Biomech Eng Trans ASME 120:757–763, 1998; Bonifasi-Lista et al. in J Orthop Res 23(1):67–76, 2005). The constitutive equation is then used to predict the nonlinear elastic and stress relaxation response of ligaments subjected to shear deformations in the fiber direction and transverse to the fiber direction, and an equibiaxial extension. A direct comparison with stress relaxation data collected by subjecting human MCLs to shear deformation in the fiber direction is presented in order to demonstrate the predictive capabilities of the model.  相似文献   
78.

Background

Free circulating DNA (fcDNA) has many potential clinical applications, due to the non-invasive way in which it is collected. However, because of the low concentration of fcDNA in blood, genome-wide analysis carries many technical challenges that must be overcome before fcDNA studies can reach their full potential. There are currently no definitive standards for fcDNA collection, processing and whole-genome sequencing. We report novel detailed methodology for the capture of high-quality methylated fcDNA, library preparation and downstream genome-wide Next-Generation Sequencing. We also describe the effects of sample storage, processing and scaling on fcDNA recovery and quality.

Results

Use of serum versus plasma, and storage of blood prior to separation resulted in genomic DNA contamination, likely due to leukocyte lysis. Methylated fcDNA fragments were isolated from 5 donors using a methyl-binding protein-based protocol and appear as a discrete band of ~180 bases. This discrete band allows minimal sample loss at the size restriction step in library preparation for Next-Generation Sequencing, allowing for high-quality sequencing from minimal amounts of fcDNA. Following sequencing, we obtained 37×106-86×106 unique mappable reads, representing more than 50% of total mappable reads. The methylation status of 9 genomic regions as determined by DNA capture and sequencing was independently validated by clonal bisulphite sequencing.

Conclusions

Our optimized methods provide high-quality methylated fcDNA suitable for whole-genome sequencing, and allow good library complexity and accurate sequencing, despite using less than half of the recommended minimum input DNA.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-476) contains supplementary material, which is available to authorized users.  相似文献   
79.
The extracellular protease ADAMTS-7 has been identified as a potential therapeutic target in atherosclerosis and associated diseases such as coronary artery disease (CAD). However, ADAMTS-7 inhibitors have not been reported so far. Screening of inhibitors has been hindered by the lack of a suitable peptide substrate and, consequently, a convenient activity assay. Here we describe the first fluorescence resonance energy transfer (FRET) substrate for ADAMTS-7, ATS7FP7. ATS7FP7 was used to measure inhibition constants for the endogenous ADAMTS-7 inhibitor, TIMP-4, as well as two hydroxamate-based zinc chelating inhibitors. These inhibition constants match well with IC50 values obtained with our SDS-PAGE assay that uses the N-terminal fragment of latent TGF-β–binding protein 4 (LTBP4S-A) as a substrate. Our novel fluorogenic substrate ATS7FP7 is suitable for high throughput screening of ADAMTS-7 inhibitors, thus accelerating translational studies aiming at inhibition of ADAMTS-7 as a novel treatment for cardiovascular diseases such as atherosclerosis and CAD.  相似文献   
80.
It has been argued that the limited genetic diversity and reduced allelic heterogeneity observed in isolated founder populations facilitates discovery of loci contributing to both Mendelian and complex disease. A strong founder effect, severe isolation, and substantial inbreeding have dramatically reduced genetic diversity in natives from the island of Kosrae, Federated States of Micronesia, who exhibit a high prevalence of obesity and other metabolic disorders. We hypothesized that genetic drift and possibly natural selection on Kosrae might have increased the frequency of previously rare genetic variants with relatively large effects, making these alleles readily detectable in genome-wide association analysis. However, mapping in large, inbred cohorts introduces analytic challenges, as extensive relatedness between subjects violates the assumptions of independence upon which traditional association test statistics are based. We performed genome-wide association analysis for 15 quantitative traits in 2,906 members of the Kosrae population, using novel approaches to manage the extreme relatedness in the sample. As positive controls, we observe association to known loci for plasma cholesterol, triglycerides, and C-reactive protein and to a compelling candidate loci for thyroid stimulating hormone and fasting plasma glucose. We show that our study is well powered to detect common alleles explaining ≥5% phenotypic variance. However, no such large effects were observed with genome-wide significance, arguing that even in such a severely inbred population, common alleles typically have modest effects. Finally, we show that a majority of common variants discovered in Caucasians have indistinguishable effect sizes on Kosrae, despite the major differences in population genetics and environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号