首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3364篇
  免费   274篇
  国内免费   3篇
  3641篇
  2021年   24篇
  2020年   22篇
  2019年   23篇
  2018年   22篇
  2017年   24篇
  2016年   50篇
  2015年   85篇
  2014年   91篇
  2013年   140篇
  2012年   157篇
  2011年   163篇
  2010年   97篇
  2009年   117篇
  2008年   139篇
  2007年   159篇
  2006年   162篇
  2005年   152篇
  2004年   128篇
  2003年   136篇
  2002年   128篇
  2001年   58篇
  2000年   60篇
  1999年   53篇
  1998年   58篇
  1997年   53篇
  1996年   47篇
  1995年   34篇
  1994年   46篇
  1993年   35篇
  1992年   41篇
  1991年   47篇
  1990年   30篇
  1989年   40篇
  1988年   35篇
  1987年   29篇
  1986年   29篇
  1985年   35篇
  1984年   31篇
  1983年   26篇
  1982年   28篇
  1981年   29篇
  1980年   41篇
  1977年   30篇
  1975年   23篇
  1974年   25篇
  1973年   20篇
  1970年   17篇
  1968年   20篇
  1936年   17篇
  1932年   18篇
排序方式: 共有3641条查询结果,搜索用时 2 毫秒
71.
Particulate membrane fractions from Volvox carteri catalyze the transfer of mannose from GDP-mannose to dolichyl diphosphate-[14C]chitobiose to form lipid-linked oligosaccharides up to a dolichyl diphospnate-chitobiose-(mannose)5 structure. Mannosylation of the chitobiosyl lipid requires divalent cations and detergents as solubilizing agents. Depending on the nature of the detergent, the oligosaccharide pattern differs markedly: With deoxycholate or the zwitterionic detergent 314 a lipid-linked trisaccharide accumulates. The nonionic Triton X-100, however, gives rise to a spectrum of compounds up to a heptasaccharide. Enzyme digestion of the tri- and pentasaccharide structure, obtained after mild acid hydrolysis of the corresponding [14C]glycolipids, revealed that the first mannose is bound via a β-glycosidic linkage to the chitobiosyl core, whereas the outer mannose residues are linked as α-mannosides. Our studies indicate that, in agreement with recent findings in other organisms, the innermost α-mannosidic residues are donated directly from GDP-mannose. The structure of oligosaccharides synthesized by Volvox membranes is thus consistent with results from other eucaryotic species, suggesting a common pathway of N-glycosylation of glycoproteins.  相似文献   
72.

Objective

Aim of this study was to identify the nitric oxide synthase (NOS) isoform involved in early microcirculatory derangements following solid organ transplantation.

Background

Tetrahydrobiopterin donor treatment has been shown to specifically attenuate these derangements following pancreas transplantation, and tetrahydrobiopterin-mediated protective effects to rely on its NOS-cofactor activity, rather than on its antioxidant capacity. However, the NOS-isoform mainly involved in this process has still to be defined.

Methods

Using a murine pancreas transplantation model, grafts lacking one of the three NOS-isoforms were compared to grafts from wild-type controls. Donors were treated with either tetrahydrobiopterin or remained untreated. All grafts were subjected to 16 h cold ischemia time and transplanted into wild-type recipients. Following 4 h graft reperfusion, microcirculation was analysed by confocal intravital fluorescence microscopy. Recipient survival was monitored for 50 days.

Results

Transplantation of the pancreas from untreated wild-type donor mice resulted in microcirculatory damage of the transplanted graft and no recipient survived more than 72 h. Transplanting grafts from untreated donor mice lacking either endothelial or inducible NOS led to similar outcomes. In contrast, donor treatment with tetrahydrobiopterin prevented microcirculatory breakdown enabling long-term survival. Sole exception was transplantation of grafts from untreated donor mice lacking neuronal NOS. It resulted in intact microvascular structure and long-term recipient survival, either if donor mice were untreated or treated with tetrahydrobiopterin.

Conclusion

We demonstrate for the first time the crucial involvement of neuronal NOS in early microcirculatory derangements following solid organ transplantation. In this model, protective effects of tetrahydrobiopterin are mediated by targeting this isoform.  相似文献   
73.
UDP-GlcNAc: Man1-6R (1-2)-N-acetylglucosaminyltransferase II (GlcNAc-T II; EC 2.4.1.143) is a key enzyme in the synthesis of complexN-glycans. We have tested a series of synthetic analogues of the substrate Man1-6(GlcNAc1-2Man1-3)Man-O-octyl as substrates and inhibitors for rat liver GlcNAc-T II. The enzyme attachesN-acetylglucosamine in 1-2 linkage to the 2-OH of the Man1-6 residue. The 2-deoxy analogue is a competitive inhibitor (K i=0.13mm). The 2-O-methyl compound does not bind to the enzyme presumably due to steric hindrance. The 3-, 4- and 6-OH groups are not essential for binding or catalysis since the 3-, 4- and 6-deoxy and -O-methyl derivatives are all good substrates. Increasing the size of the substituent at the 3-position to pentyl and substituted pentyl groups causes competitive inhibition (K i=1.0–2.5mm). We have taken advantage of this effect to synthesize two potentially irreversible GlcNAc-T II inhibitors containing a photolabile 3-O-(4,4-azo)pentyl group and a 3-O-(5-iodoacetamido)pentyl group respectively. The data indicate that none of the hydroxyls of the Man1-6 residue are essential for binding although the 2- and 3-OH face the catalytic site of the enzyme. The 4-OH group of the Man-O-octyl residue is not essential for binding or catalysis since the 4-deoxy derivative is a good substrate; the 4-O-methyl derivative does not bind. This contrasts with GlcNAc-T I which cannot bind to the 4-deoxy-Man- substrate analogue. The data are compatible with our previous observations that a bisectingN-acetylglucosamine at the 4-OH position prevents both GlcNAc-T I and GlcNAc-T II catalysis. However, in the case of GlcNAc-T II, the bisectingN-acetylglucosamine prevents binding due to steric hindrance rather than to removal of an essential OH group. The 3-OH of the Man1-3 is an essential group for GlcNAc-T II since the 3-deoxy derivative does not bind to the enzyme. The trisaccharide GlcNAc1-2Man1-3Man-O-octyl is a good inhibitor (K i=0.9mm). The above data together with previous studies indicate that binding of the GlcNAc1-2Man1-3Man- arm of the branched substrate to the enzyme is essential for catalysis. Abbreviations: GlcNAc-T I, UDP-GlcNAc:Man1-3R (1-2)-N-acetylglucosaminyltransferase I (EC 2.4.1.101); GlcNAc-T II, UDP-GlcNAc:Man1-6R (1-2)-N-acetylglucosaminyltransferase II (EC 2.4.1.143); MES, 2-(N-morpholino)ethane sulfonic acid monohydrate.  相似文献   
74.
Following microbial pathogen invasion, the human immune system of activated phagocytes generates and releases the potent oxidant hypochlorous acid (HOCl), which contributes to the killing of menacing microorganisms. Though tightly controlled, HOCl generation by the myeloperoxidase-hydrogen peroxide-chloride system of neutrophils/monocytes may occur in excess and lead to tissue damage. It is thus of marked importance to delineate the molecular pathways underlying HOCl cytotoxicity in both microbial and human cells. Here, we show that HOCl induces the generation of reactive oxygen species (ROS), apoptotic cell death and the formation of specific HOCl-modified epitopes in the budding yeast Saccharomyces cerevisiae. Interestingly, HOCl cytotoxicity can be prevented by treatment with ROS scavengers, suggesting oxidative stress to mediate the lethal effect. The executing pathway involves the pro-apoptotic protease Kex1p, since its absence diminishes HOCl-induced production of ROS, apoptosis and protein modification. By characterizing HOCl-induced cell death in yeast and identifying a corresponding central executor, these results pave the way for the use of Saccharomyces cerevisiae in HOCl research, not least given that it combines both being a microorganism as well as a model for programmed cell death in higher eukaryotes.  相似文献   
75.
76.
Summary In order to establish a transformation system for P. chrysogenum autonomously replicating vectors were constructed using mitochondrial DNA sequences from the fungus. A physical map of the mt DNA of a production strain was established using ten different restriction enzymes. Unexpectedly, the mt DNA of this strain proved to be significantly smaller than that of a second strain from a culture collection (27 kb versus 49 kb). Various fragments representing about 71% of the 27 kb mt DNA were cloned and, at first, preselected for replicating activity in an intermediate host (Saccharomyces cerevisiae). Two of these fragments also promoted autonomous replication in P. chrysogenum, which was confirmed by isolation of bulk DNA and transfer into E. coli. For selection of transformants in P. chrysogenum the prokaryotic kanamycin resistance gene was used which increased about twofold the resistance against G418. Present address: Institut für Biotechnologie, Fachgebiet Mikrobiologie, Techn. Universität Berlin, Seestr. 13, D-1000 Berlin 65  相似文献   
77.
Understanding of the functions of microRNAs in breast cancer and breast cancer stem cells have been a hope for the development of new molecular targeted therapies. Here, it is aimed to investigate the differences in the expression levels of let-7a, miR-10b, miR-21, miR-125b, miR-145, miR-155, miR-200c, miR-221, miR-222 and miR-335, which associated with gene and proteins in MCF-7 (parental) and MCF-7s (Mammosphere/stem cell-enriched population/CD44+/CD24-cells) cells treated with paclitaxel. MCF-7s were obtained from parental MCF-7 cells. Cytotoxic activity of paclitaxel was determined by ATP assay. Total RNA isolation and cDNA conversion were performed from the samples. Changes in expression levels of miRNAs were examined by RT-qPCR. Identified target genes and proteins of miRNAs were analyzed with RT-qPCR and western blot analysis, respectively. miR-125b was significantly expressed (2.0946-fold; p = 0.021) in MCF-7s cells compared to control after treatment with paclitaxel. Downregulation of SMO, STAT3, NANOG, OCT4, SOX2, ERBB2 and ERBB3 and upregulation of TP53 genes were significant after 48 h treatment in MCF-7s cells. Protein expressions of SOX2, OCT4, SMAD4, SOX2 and OCT4 also decreased. Paclitaxel induces miR-125b expression in MCF-7s cells. Upregulation of miR-125b may be used as a biomarker for the prediction of response to paclitaxel treatment in breast cancer.  相似文献   
78.
79.
Short/branched-chain acyl-CoA dehydrogenase deficiency (SBCADD) is an autosomal recessive disorder of l-isoleucine catabolism. Little is known about the clinical presentation associated with this enzyme defect, as it has been reported in only a limited number of patients. Because the presence of C5-carnitine in blood may indicate SBCADD, the disorder may be detected by MS/MS-based routine newborn screening. It is, therefore, important to gain more knowledge about the clinical presentation and the mutational spectrum of SBCADD. In the present study, we have studied two unrelated families with SBCADD, both with seizures and psychomotor delay as the main clinical features. One family illustrates the fact that affected individuals may also remain asymptomatic. In addition, the normal level of newborn blood spot C5-acylcarnitine in one patient underscores the fact that newborn screening by MS/MS currently lacks sensitivity in detecting SBCADD. Until now, seven mutations in the SBCAD gene have been reported, but only three have been tested experimentally. Here, we identify and characterize an IVS3+3A>G mutation (c.303+3A>G) in the SBCAD gene, and provide evidence that this mutation is disease-causing in both families. Using a minigene approach, we show that the IVS3+3A>G mutation causes exon 3 skipping, despite the fact that it does not appear to disrupt the consensus sequence of the 5′ splice site. Based on these results and numerous literature examples, we suggest that this type of mutation (IVS+3A>G) induces missplicing only when in the context of non-consensus (weak) 5′ splice sites. Statistical analysis of the sequences shows that the wild-type versions of 5′ splice sites in which +3A>G mutations cause exon skipping and disease are weaker on average than a random set of 5′ splice sites. This finding is relevant to the interpretation of the functional consequences of this type of mutation in other disease genes.  相似文献   
80.
Annexins are structurally-related proteins which bind phospholipids in a Ca2+-dependent manner. We have used a novel coupling strategy to prepare an antiserum directed against a 17-amino acid synthetic peptide that resembles the sequence of a highly-conserved portion of these proteins. This antipeptide serum specifically recognizes 5 of 6 human annexins on Western blots, despite differences between the protein and peptide sequences of 3 or 4 amino acids. The antiserum does not recognize endonexin II, whose sequence differs from that of the peptide by 6 amino acids. The availability of multiple proteins with known amino acid sequence has allowed analysis of structural requirements for recognition by this antibody. In some situations, use of such an antibody may allow the identification of a protein as a member of a family.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号