首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3317篇
  免费   271篇
  国内免费   3篇
  3591篇
  2021年   19篇
  2020年   22篇
  2019年   23篇
  2018年   22篇
  2017年   24篇
  2016年   49篇
  2015年   84篇
  2014年   91篇
  2013年   139篇
  2012年   154篇
  2011年   162篇
  2010年   96篇
  2009年   113篇
  2008年   138篇
  2007年   156篇
  2006年   162篇
  2005年   148篇
  2004年   128篇
  2003年   133篇
  2002年   128篇
  2001年   58篇
  2000年   57篇
  1999年   51篇
  1998年   53篇
  1997年   53篇
  1996年   45篇
  1995年   35篇
  1994年   44篇
  1993年   35篇
  1992年   41篇
  1991年   47篇
  1990年   30篇
  1989年   40篇
  1988年   35篇
  1987年   29篇
  1986年   29篇
  1985年   35篇
  1984年   31篇
  1983年   26篇
  1982年   28篇
  1981年   28篇
  1980年   39篇
  1977年   29篇
  1975年   22篇
  1974年   25篇
  1973年   20篇
  1970年   17篇
  1968年   20篇
  1936年   17篇
  1932年   18篇
排序方式: 共有3591条查询结果,搜索用时 10 毫秒
91.
Phospholipase D (PLD) and its product phosphatidic acid (PA) are incorporated in a complex metabolic network in which the individual PLD isoforms are suggested to regulate specific developmental and stress responses, including plant programmed cell death (PCD). Despite the accumulating knowledge, the mechanisms through which PLD/PA operate during PCD are still poorly understood. In this work, the role of PLDα1 in PCD and the associated caspase-like proteolysis, ethylene and hydrogen peroxide (H2O2) synthesis in tomato suspension cells was studied. Wild-type (WT) and PLDα1-silenced cell lines were exposed to the cell death-inducing chemicals camptothecin (CPT), fumonisin B1 (FB1) and CdSO4. A range of caspase inhibitors effectively suppressed CPT-induced PCD in WT cells, but failed to alleviate cell death in PLDα1-deficient cells. Compared to WT, in CPT-treated PLDα1 mutant cells, reduced cell death and decreased production of H2O2 were observed. Application of ethylene significantly enhanced CPT-induced cell death both in WT and PLDα1 mutants. Treatments with the PA derivative lyso-phosphatidic acid and mastoparan (agonist of PLD/PLC signalling downstream of G proteins) caused severe cell death. Inhibitors, specific to PLD and PLC, remarkably decreased the chemical-induced cell death. Taken together with our previous findings, the results suggest that PLDα1 contributes to caspase-like-dependent cell death possibly communicated through PA, reactive oxygen species and ethylene. The dead cells expressed morphological features of PCD such as protoplast shrinkage and nucleus compaction. The presented findings reveal novel elements of PLD/PA-mediated cell death response and suggest that PLDα1 is an important factor in chemical-induced PCD signal transduction.  相似文献   
92.
93.
Thoenges D  Zscherp C  Grell E  Barth A 《Biopolymers》2002,67(4-5):271-274
In the case of the integral membrane protein Na+/K+-ATPase, preparation of highly concentrated samples for IR difference spectroscopy often leads to inactivation of the enzyme. Therefore, we compared the activity of Na+/K+-ATPase using different techniques of sample preparation. The loss of activity can be minimized by cooling the sample to 10 degrees C and by the addition of glycerol and dithiothreitol. The activity of Na+/K+-ATPase isolated from pig kidney is independent of the protein concentration whereas the enzyme from shark rectal gland is inactivated at concentrations above 1 microg/microL and is thus unsuitable for IR experiments.  相似文献   
94.
The majority of humans infected with Helicobacter pylori maintain a lifelong infection with strains bearing the cag pathogenicity island (PAI). H. pylori inhibits T cell responses and evades immunity so the mechanism by which infection impairs responsiveness was investigated. H. pylori caused apoptotic T cell death, whereas Campylobacter jejuni did not. The induction of apoptosis by H. pylori was blocked by an anti-Fas Ab (ZB4) or a caspase 8 inhibitor. In addition, a T cell line with the Fas rendered nonfunctional by a frame shift mutation was resistant to H. pylori-induced death. H. pylori strains bearing the cag PAI preferentially induced the expression of Fas ligand (FasL) on T cells and T cell death, whereas isogenic mutants lacking these genes did not. Inhibiting protein synthesis blocked FasL expression and apoptosis of T cells. Preventing the cleavage of FasL with a metalloproteinase inhibitor increased H. pylori-mediated killing. Thus, H. pylori induced apoptosis in Fas-bearing T cells through the induction of FasL expression. Moreover, this effect was linked to bacterial products encoded by the cag PAI, suggesting that persistent infection with this strain may be favored through the negative selection of T cells encountering specific H. pylori Ags.  相似文献   
95.
The distribution of Na+ pump sites (Na+-K+-ATPase) in the secretory epithelium of the avian salt gland was demonstrated by freeze-dry autoradiographic analysis of [(3)H] ouabain binding sites. Kinetic studies indicated that near saturation of tissue binding sites occurred when slices of salt glands from salt-stressed ducks were exposed to 2.2 μM ouabain (containing 5 μCi/ml [(3)H]ouabain) for 90 min. Washing with label-free Ringer's solution for 90 min extracted only 10% of the inhibitor, an amount which corresponded to ouabain present in the tissue spaces labeled by [(14)C]insulin. Increasing the KCl concentration of the incubation medium reduced the rate of ouabain binding but not the maximal amount bound. In contrast to the low level of ouabain binding to salt glands of ducks maintained on a freshwater regimen, exposure to a salt water diet led to a more than threefold increase in binding within 9-11 days. This increase paralleled the similar increment in Na+-K+-ATPase activity described previously. [(3)H]ouabain binding sites were localized autoradiographically to the folded basolateral plasma membrane of the principal secretory cells. The luminal surfaces of these cells were unlabeled. Mitotically active peripheral cells were also unlabeled. The cell-specific pattern of [(3)H]ouabain binding to principal secretory cells and the membrane-specific localization of binding sites to the nonluminal surfaces of these cells were identical to the distribution of Na+-K+-ATPase as reflected by the cytochemical localization of ouabain-sensitive and K+-dependent nitrophenyl phosphatase activity. The relationship between the nonluminal localization of Na+-K+-ATPase and the possible role of the enzyme n NaCl secretion is considered in the light of physiological data on electrolyte transport in salt glands and other secretory epithelia.  相似文献   
96.
97.

Objective

To explore the capacity of human CD14+CD16++ and CD14++CD16- monocytes to phagocyte iron-oxide nanoparticles in vitro.

Methods

Human monocytes were labeled with four different magnetic nanoparticle preparations (Ferumoxides, SHU 555C, CLIO-680, MION-48) exhibiting distinct properties and cellular uptake was quantitatively assessed by flow cytometry, fluorescence microscopy, atomic absorption spectrometry and Magnetic Resonance Imaging (MRI). Additionally we determined whether cellular uptake of the nanoparticles resulted in phenotypic changes of cell surface markers.

Results

Cellular uptake differed between the four nanoparticle preparations. However for each nanoparticle tested, CD14++CD16- monocytes displayed a significantly higher uptake compared to CD14+CD16++ monocytes, this resulted in significantly lower T1 and T2 relaxation times of these cells. The uptake of iron-oxide nanoparticles further resulted in a remarkable shift of expression of cell surface proteins indicating that the labeling procedure affects the phenotype of CD14+CD16++ and CD14++CD16- monocytes differently.

Conclusion

Human monocyte subsets internalize different magnetic nanoparticle preparations differently, resulting in variable loading capacities, imaging phenotypes and likely biological properties.  相似文献   
98.
In this study, we explore the potential to reconstruct lake-level (and groundwater) fluctuations from tree-ring chronologies of black alder (Alnus glutinosa L.) for three study lakes in the Mecklenburg Lake District, northeastern Germany. As gauging records for lakes in this region are generally short, long-term reconstructions of lake-level fluctuations could provide valuable information on past hydrological conditions, which, in turn, are useful to assess dynamics of climate and landscape evolution. We selected black alder as our study species as alder typically thrives as riparian vegetation along lakeshores. For the study lakes, we tested whether a regional signal in lake-level fluctuations and in the growth of alder exists that could be used for long-term regional hydrological reconstructions, but found that local (i.e. site-specific) signals in lake level and tree-ring chronologies prevailed. Hence, we built lake/groundwater-level reconstruction models for the three study lakes individually. Two sets of models were considered based on (1) local tree-ring series of black alder, and (2) site-specific Standardized Precipitation Evapotranspiration Indices (SPEI). Although the SPEI-based models performed statistically well, we critically reflect on the reliability of these reconstructions, as SPEI cannot account for human influence. Tree-ring based reconstruction models, on the other hand, performed poor. Combined, our results suggest that, for our study area, long-term regional reconstructions of lake-level fluctuations that consider both recent and ancient (e.g., archaeological) wood of black alder seem extremely challenging, if not impossible.  相似文献   
99.
Biomarker studies for metabolic disorders like diabetes mellitus (DM) are an important approach towards a better understanding of the underlying pathophysiological mechanisms of diseases (Roberts and Gerszten in Cell Metab 18:43–50, 2013; Wilson et al. in Proteome Res 4:591–598, 2005). Furthermore, screening of potential metabolic biomarkers opens the opportunity of early diagnosis as well as therapy and drug monitoring of metabolic disorders (Rhee et al. in J Clin Invest 10:1–10, 2011; Wang et al. in Nat Med 17:448–458, 2011; Wenk in Nat Rev Drug Discov 4:594–610, 2005). The aim of the present study was to develop methods for the quantitative determination of 74 potential metabolite biomarkers for DM and diabetic nephropathy (DN) in serum. Several studies have shown that the concentrations of many polar metabolites like amino or organic acids are changed in subjects suffering from diabetes (Wang et al. in Nat Med 17:448–458, 2011; Yuan et al. in J Chromatogr B 813:53–58, 2007). Analyzing polar analytes presents a challenge in liquid chromatography (LC) coupled with ESI–MS/MS (Gika et al. in J Sep Sci 31:1598–1608, 2008; Spagou et al. in J Sep Sci 33:716–727, 2010). Considering those reasons we decided to develop a specific HILIC–ESI–QqQ–MS/MS-method for quantitative determination of these polar metabolites. A subsequent method validation was carried out for both HILIC and RP chromatography with respect to the guidelines of the Food and Drug Administration (FDA in Food and Drug Administration: Guidance for industry, bioanalytical method validation, 2001). The HILIC and RP LC–MS methods were successfully validated. Furthermore, the HILIC method presented here was applied to serum samples of GIPRdn transgenic mice, a diabetic strain developing DN, and non transgenic littermate controls. Significant, diabetes-associated changes were observed for the concentrations of 21 out of 62 metabolites. The new methods described here accurately quantify 74 metabolites known to be regulated in diabetes, allowing for direct comparison between studies and laboratories. Thus, these methods may be highly adoptable in clinical research, providing a starting point for early diagnosis and metabolic screening.  相似文献   
100.
Vascular ischemic diseases, hypertension, and other systemic hemodynamic and vascular disorders may be the result of impaired bioavailability of nitric oxide (NO). NO but also its active derivates like nitrite or nitroso compounds are important effector and signal molecules with vasodilating properties. Our previous findings point to a therapeutical potential of cutaneous administration of NO in the treatment of systemic hemodynamic disorders. Unfortunately, no reliable data are available on the mechanisms, kinetics and biological responses of dermal application of nitric oxide in humans in vivo. The aim of the study was to close this gap and to explore the therapeutical potential of dermal nitric oxide application. We characterized with human skin in vitro and in vivo the capacity of NO, applied in a NO-releasing acidified form of nitrite-containing liniments, to penetrate the epidermis and to influence local as well as systemic hemodynamic parameters. We found that dermal application of NO led to a very rapid and significant transepidermal translocation of NO into the underlying tissue. Depending on the size of treated skin area, this translocation manifests itself through a significant systemic increase of the NO derivates nitrite and nitroso compounds, respectively. In parallel, this translocation was accompanied by an increased systemic vasodilatation and blood flow as well as reduced blood pressure. We here give evidence that in humans dermal application of NO has a therapeutic potential for systemic hemodynamic disorders that might arise from local or systemic insufficient availability of NO or its bio-active NO derivates, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号