首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3553篇
  免费   281篇
  国内免费   3篇
  2021年   27篇
  2020年   24篇
  2019年   23篇
  2018年   23篇
  2017年   25篇
  2016年   54篇
  2015年   92篇
  2014年   101篇
  2013年   152篇
  2012年   165篇
  2011年   176篇
  2010年   104篇
  2009年   123篇
  2008年   151篇
  2007年   171篇
  2006年   173篇
  2005年   164篇
  2004年   141篇
  2003年   143篇
  2002年   144篇
  2001年   64篇
  2000年   62篇
  1999年   56篇
  1998年   55篇
  1997年   56篇
  1996年   46篇
  1995年   36篇
  1994年   47篇
  1993年   38篇
  1992年   41篇
  1991年   48篇
  1990年   31篇
  1989年   41篇
  1988年   38篇
  1987年   31篇
  1986年   32篇
  1985年   36篇
  1984年   31篇
  1983年   26篇
  1982年   30篇
  1981年   33篇
  1980年   41篇
  1978年   18篇
  1977年   29篇
  1975年   22篇
  1974年   26篇
  1973年   21篇
  1970年   18篇
  1968年   21篇
  1932年   18篇
排序方式: 共有3837条查询结果,搜索用时 31 毫秒
921.
Exudates from the brown algaeCaepidium antarcticum andDesmarestia sp. were investigated for their ability to associate with hydrophobic pollutants such as polychlorinated biphenyls (PCB s). The percentage of PCB associated with algal exudates ranged from 79% for decachlorobiphenyl to 23% for the pentachlorobiphenyl congener No. 95. Exudates from the tested brown algae may therefore alter the bioavailability of PCBs in natural or artificial ecosystems.  相似文献   
922.
923.
Peptidoglycan from Deinococcus radiodurans was analyzed by high-performance liquid chromatography and mass spectrometry. The monomeric subunit was: N-acetylglucosamine–N-acetylmuramic acid–l-Ala–d-Glu-(γ)–l-Orn-[(δ)Gly-Gly]–d-Ala–d-Ala. Cross-linkage was mediated by (Gly)2 bridges, and glycan strands were terminated in (1→6)anhydro-muramic acid residues. Structural relations with the phylogenetically close Thermus thermophilus are discussed.The gram-positive bacterium Deinococcus radiodurans is remarkable because of its extreme resistance to ionizing radiation (14). Phylogenetically the closest relatives of Deinococcus are the extreme thermophiles of the genus Thermus (4, 11). In 16S rRNA phylogenetic trees, the genera Thermus and Deinococcus group together as one of the older branches in bacterial evolution (11). Both microorganisms have complex cell envelopes with outer membranes, S-layers, and ornithine-Gly-containing mureins (7, 12, 19, 20, 22, 23). However, Deinococcus and Thermus differ in their response to the Gram reaction, having positive and negative reactions, respectively (4, 14). The murein structure for Thermus thermophilus HB8 has been recently elucidated (19). Here we report the murein structure of Deinococcus radiodurans with similar detail.D. radiodurans Sark (23) was used in the present study. Cultures were grown in Luria-Bertani medium (13) at 30°C with aeration. Murein was purified and subjected to amino acid and high-performance liquid chromatography (HPLC) analyses as previously described (6, 9, 10, 19). For further analysis muropeptides were purified, lyophilized, and desalted as reported elsewhere (6, 19). Purified muropeptides were subjected to plasma desorption linear time-of-flight mass spectrometry (PDMS) as described previously (1, 5, 16, 19). Positive and negative ion mass spectra were obtained on a short linear 252californium time-of-flight instrument (BioIon AB, Uppsala, Sweden). The acceleration voltage was between 17 and 19 kV, and spectra were accumulated for 1 to 10 million fission events. Calibration of the mass spectra was done in the positive ion mode with H+ and Na+ ions and in the negative ion mode with H and CN ions. Calculated m/z values are based on average masses.Amino acid analysis of muramidase (Cellosyl; Hoechst, Frankfurt am Main, Germany)-digested sacculi (50 μg) revealed Glu, Orn, Ala, and Gly as the only amino acids in the muramidase-solubilized material. Less than 3% of the total Orn remained in the muramidase-insoluble fraction, indicating an essentially complete solubilization of murein.Muramidase-digested murein samples (200 μg) were analyzed by HPLC as described in reference 19. The muropeptide pattern (Fig. (Fig.1)1) was relatively simple, with five dominating components (DR5 and DR10 to DR13 [Fig. 1]). The muropeptides resolved by HPLC were collected, desalted, and subjected to PDMS. The results are presented in Table Table11 compared with the m/z values calculated for best-matching muropeptides made up of N-acetylglucosamine (GlucNAc), N-acetylmuramic acid (MurNAc), and the amino acids detected in the murein. The more likely structures are shown in Fig. Fig.1.1. According to the m/z values, muropeptides DR1 to DR7 and DR9 were monomers; DR8, DR10, and DR11 were dimers; and DR12 and DR13 were trimers. The best-fitting structures for DR3 to DR8, DR11, and DR13 coincided with muropeptides previously characterized in T. thermophilus HB8 (19) and had identical retention times in comparative HPLC runs. The minor muropeptide DR7 (Fig. (Fig.1)1) was the only one detected with a d-Ala–d-Ala dipeptide and most likely represents the basic monomeric subunit. The composition of the major cross-linked species DR11 and DR13 confirmed that cross-linking is mediated by (Gly)2 bridges, as proposed previously (20). Open in a separate windowFIG. 1HPLC muropeptide elution patterns of murein purified from D. radiodurans. Muramidase-digested murein samples were subjected to HPLC analysis, and the A204 of the eluate was recorded. The most likely structures for each muroeptide as deduced by PDMS are shown. The position of residues in brackets is the most likely one as deduced from the structures of other muropeptides but could not be formally demonstrated. R = GlucNac–MurNac–l-Ala–d-Glu-(γ)→.

TABLE 1

Calculated and measured m/z values for the molecular ions of the major muropeptides from D. radiodurans
MuropeptideaIonm/z
ΔmbError (%)cMuropeptide composition
Muropeptide abundance (mol%)
CalculatedMeasuredNAGdNAMeGluOrnAlaGly
DR1[M+H]+699.69700.10.410.0611101012.0
DR2[M+H]+927.94928.30.360.041111125.7
DR3[M+Na]+1,006.971,007.50.530.051111133.0
DR4[M+Na]+963.95964.60.650.071111212.5
DR5[M+H]+999.02999.80.780.0811112227.7
[M−H]997.00997.30.300.03
DR6[M+Na]+1,078.51,078.80.750.071111232.4
DR7[M+H]+1,070.091,071.00.900.081111322.2
DR8[M+Na]+1,520.531,521.61.080.071122442.2
DR9[M+Na]+701.64702.10.460.0311f10105.0
DR10[M+H]+1,907.941,907.80.140.0122223410.1
[M−H]1,905.921,906.60.680.04
DR11[M+H]+1,979.011,979.10.090.0122224419.1
[M−H]1,977.001,977.30.300.02
DR12[M+H]+2,887.932,886.5−1.43−0.053333564.4
[M−H]2,885.912,885.8−0.11−0.01
DR13[M+H]+2,959.002,957.8−1.20−0.043333663.6
[M−H]2,956.992,955.9−1.09−0.04
Open in a separate windowaDR5 and DR10 to DR13 were analyzed in both the positive and negative ion modes. Muropeptides DR1 to DR4 and DR6 to DR9 were analyzed in the positive mode only due to the small amounts of sample available. bMass difference between measured and calculated quasimolecular ion values. c[(Measured mass−calculated mass)/calculated mass] × 100. dN-Acetylglucosamine. eN-Acetylmuramitol. f(1→6)Anhydro-N-acetylmuramic acid. Structural assignments of muropeptides DR1, DR2, DR8 to DR10, and DR12 deserve special comments. The low m/z value measured for DR1 (700.1) fitted very well with the value calculated for GlucNAc–MurNAc–l-Ala–d-Glu (699.69). Even smaller was the mass deduced for DR9 from the m/z value of the molecular ion of the sodium adduct (702.1) (Fig. (Fig.2).2). The mass difference between DR1 and DR9 (19.9 mass units) was very close indeed to the calculated difference between N-acetylmuramitol and the (1→6)anhydro form of MurNAc (20.04 mass units). Therefore, DR9 was identified as GlucNAc–(1→6)anhydro-MurNAc–l-Ala–d-Glu (Fig. (Fig.1).1). Muropeptides with (1→6)anhydro muramic acid have been identified in mureins from diverse origins (10, 15, 17, 19), indicating that it might be a common feature among peptidoglycan-containing microorganisms. Open in a separate windowFIG. 2Positive-ion linear PDMS of muropeptide DR9. Muropeptide DR9 was purified, desalted by HPLC, and subjected to PDMS to determine the molecular mass. The masses for the dominant molecular ions are indicated.The measured m/z value for the [M+Na]+ ion of DR8 was 1,521.6, very close to the mass calculated for a cross-linked dimer without one disaccharide moiety (1,520.53) (Fig. (Fig.1;1; Table Table1).1). Such muropeptides, also identified in T. thermophilus HB8 and other bacteria (18, 19), are most likely generated by the enzymatic clevage of MurNAc–l-Ala amide bonds in murein by an N-acetylmuramyl–l-alanine amidase (21). In particular, DR8 could derive from DR11. The difference between measured m/z values for DR8 and DR11 was 478.7, which fits with the mass contribution of a disaccharide moiety (480.5) within the mass accuracy of the instrument.The m/z values for muropeptides DR2, DR10, and DR12 supported the argument for structures in which the two d-Ala residues from the d-Ala–d-Ala C-terminal dipeptide were lost, leaving Orn as the C-terminal amino acid.The position of one Gly residue in muropeptides DR2, DR8, and DR10 to DR13 could not be formally demonstrated. One of the Gly residues could be at either the N- or the C-terminal positions. However, the N-terminal position seems more likely. The structure of the basic muropeptide (DR7), with a (Gly)2 acylating the δ-NH2 group of Orn, suggests that major muropeptides should present a (Gly)2 dipeptide. The scarcity of DR3 and DR6, which unambiguously have Gly as the C-terminal amino acid (Fig. (Fig.1),1), supports our assumption.Molar proportions for each muropeptide were calculated as proposed by Glauner et al. (10) and are shown in Table Table1.1. For calculations the structures of DR10 to DR13 were assumed to be those shown in Fig. Fig.1.1. The degree of cross-linkage calculated was 47.2%. Trimeric muropeptides were rather abundant (8 mol%) and made a substantial contribution to total cross-linkage. However, higher-order oligomers were not detected, in contrast with other gram-positive bacteria, such as Staphylococcus aureus, which is rich in such oligomers (8). The proportion of muropeptides with (1→6)anhydro-muramic acid (5 mol%) corresponded to a mean glycan strand length of 20 disaccharide units, which is in the range of values published for other bacteria (10, 17).The results of our study indicate that mureins from D. radiodurans and T. thermophilus HB8 (19) are certainly related in their basic structures but have distinct muropeptide compositions. In accordance with the phylogenetic proximity of Thermus and Deinococcus (11), both mureins are built up from the same basic monomeric subunit (DR7 in Fig. Fig.1),1), are cross-linked by (Gly)2 bridges, and have (1→6)anhydro-muramic acid at the termini of glycan strands. Most interestingly, Deinococcus and Thermus are the only microorganisms identified at present with the murein chemotype A3β as defined by Schleifer and Kandler (20). Nevertheless, the differences in muropeptide composition were substantial. Murein from D. radiodurans was poor in d-Ala–d-Ala- and d-Ala–Gly-terminated muropeptides (2.2 and 2.4 mol%, respectively) but abundant in Orn-terminated muropeptides (23.8 mol%) and in muropeptides with a peptide chain reduced to the dipeptide l-Ala–d-Glu (18 mol%). In contrast, neither Orn- nor Glu-terminated muropeptides have been detected in T. thermophilus HB8 murein, which is highly enriched in muropeptides with d-Ala–d-Ala and d-Ala–Gly (19). Furthermore, no traces of phenyl acetate-containing muropeptides, a landmark for T. thermophilus HB8 murein (19), were found in D. radiodurans. Cross-linkage was definitely higher in D. radiodurans than in T. thermophilus HB8 (47.4 and 27%, respectively), largely due to the higher proportion of trimers in the former.The similarity in murein basic structure suggests that the difference between D. radiodurans and T. thermophilus HB8 with respect to the Gram reaction may simply be a consequence of the difference in the thickness of cell walls (2, 3, 23). Interestingly, D. radiodurans murein turned out to be relatively simple for a gram-positive organism, possibly reflecting the primitive nature of this genus as deduced from phylogenetic trees (11). Our results illustrate the phylogenetic proximity between Deinococcus and Thermus at the cell wall level but also point out the structural divergences originated by the evolutionary history of each genus.  相似文献   
924.
Exposure of the two related human leukemic cell lines U937 and TUR to chemotherapeutic compounds resulted in opposite effects on induction and resistance to apoptosis. Incubation of U937 cells with 1-β- -arabinofuranosylcytosine or the etoposide VP-16 was accompanied by growth arrest in G0/G1of the cell cycle and an accumulation of a population in the sub-G1phase which exhibited characteristics typical for the apoptotic pathway. In contrast, human TUR leukemia cells demonstrated no significant effects after a similar treatment with Ara-C and VP-16. Thus, TUR cells continued to proliferate in the presence of these anti-cancer drugs and the number of apoptotic cells as evaluated by propidium iodide staining and the detection of internucleosomal DNA fragmentation was significantly reduced when compared to the parental U937 cells. Similar effects were observed upon serum-starvation demonstrating resistance to apoptosis in TUR cells. Whereas induction of apoptosis is regulated by a network of distinct factors including the activation of proteolytically active caspases, we investigated these pathways in both cell lines. U937 cells demonstrated activation of the 32-kDa caspase-3 upon drug treatment by cleavage into the 20-kDa activated form. However, there was no 20-kDa caspase-3 fragment detectable in TUR cells. Simultaneously, the enzymatic activity of caspase-3 was significantly increased in drug-treated U937 cells as measuredin vitroby enhanced metabolization of a fluorescence substrate andin vivoby cleavage of an appropriate substrate for caspase-3, namely, protein kinase Cδ. In contrast, there was little if any caspase-3 activation detectable in drug-treated TUR cells. Taken together, these data suggest a signaling defect in the activation of the caspase-3 proteolytic system in TUR cells upon treatment with chemotherapeutic compounds which is associated with resistance to apoptosis in these human leukemia cells.  相似文献   
925.
926.
Peptide-based fluoromethyl ketones have been considered for many years to be highly specific caspase inhibitors distinctly blocking the progress of apoptosis in a variety of systems. Here we demonstrate that these compounds can significantly reduce rhinovirus multiplication in cell culture. In their methylated forms they block eIF4GI cleavage in vivo and in vitro and inhibit the activity of picornaviral 2A proteinases.  相似文献   
927.
Binary complexes formed by components of the Yersinia pestis type III secretion system were investigated by surface plasmon resonance (SPR) and matrix-assisted laser desorption time-of-flight mass spectrometry. Pairwise interactions between 15 recombinant Yersinia outer proteins (Yops), regulators, and chaperones were first identified by SPR. Mass spectrometry confirmed over 80% of the protein-protein interactions suggested by SPR, and new binding partners were further characterized. The Yop secretion protein (Ysc) M2 of Yersinia enterocolitica and LcrQ of Y. pestis, formerly described as ligands only for the specific Yop chaperone (Syc) H, formed stable complexes with SycE. Additional previously unreported complexes of YscE with the translocation regulator protein TyeA and the thermal regulator protein YmoA and multiple potential protein contacts by YscE, YopK, YopH, and LcrH were also identified. Because only stably folded proteins were examined, the interactions we identified are likely to occur either before or after transfer through the injectosome to mammalian host cells and may have relevance to understanding disease processes initiated by the plague bacterium.  相似文献   
928.
In this study, a novel sodium-dependent organic anion transporter (Soat) was identified. Soat is expressed in rat brain, heart, kidney, lung, muscle, spleen, testis, adrenal gland, small intestine, and colon. The Soat protein consists of 370 amino acids and shows 42% and 31% overall amino acid sequence identity to the ileal sodium-dependent bile acid transporter (Isbt) and the Na(+)/taurocholate cotransporting polypeptide (Ntcp), respectively. Soat is predicted to have nine transmembrane domains, with an N-terminus outside the cell and an intracellular C-terminus. The Soat gene is localized on chromosome 14 and is coded by six exons mapped in region 14p22. When expressed in Xenopus laevis oocytes, Soat shows transport function for estrone-3-sulfate (Km = 31 microM, Vmax = 5557 fmol/oocyte/30 min) and dehydroepiandrosterone sulfate (Km = 30 microM, Vmax = 5682 fmol/oocyte/30 min). Soat does not transport taurocholate, estradiol-17beta-glucuronide, nor ouabain.  相似文献   
929.
Oocyte mitochondrial dysfunction has been proposed as a cause of high levels of developmental retardation and arrest that occur in human preimplantation embryos generated using assisted reproductive technology in the treatment of some causes of female infertility. To investigate this, a model of mitochondrial dysfunction was developed in mouse oocytes using a method of photosensitization of the mitochondrion-specific dye, rhodamine-123. After in vitro fertilization, dye-loaded and photosensitized oocytes showed developmental arrest in proportion to irradiation time. Morphological and metabolic assessments of zygotes indicated an increase in mitochondrial permeability that subsequently resulted in apoptotic degeneration. Development was partially restored by inhibition of mitochondrial permeability transition pore formation by oocyte pretreatment with cyclosporin A. Oocyte mitochondria are therefore physiological regulators of early embryo development and potential sites of pathological insult that may perturb oocyte and subsequent preimplantation embryo viability. These findings have important implications for the treatment of clinically infertile women using assisted reproductive technologies.  相似文献   
930.
One of the major problems in the biotechnology industry is the selection of cell lines well suited for production of biopharmaceutical proteins. Usually, the most important selection criterion is the cell specific production rate. Nevertheless, a good producer cell line should have a number of additional advantageous properties, which allow the cell line to perform well in the type of bioreactor chosen for the process. However, the time and work required to select for high production rates as well as the lack of methods to specifically select for other cellular properties, usually prevents researchers from including such criteria into their screening program.With the Single Cell Secretion Assay it is possible to measure the specific production rates of individual cells by catching secreted product in an artificial matrix applied to the cell surface. Flow cytometric cell sorting then allows selection of rare cells with high production rates, which occur at frequencies as low as 10(-6). By combining this method with culture conditions that bring out a desired cellular property, we were able to isolate subclones with similar production rates, but improved performance from a recombinant Chinese hamster ovary cell line producing a human monoclonal antibody. The two desired cellular properties screened for were a non-growth associated production kinetic and improved stability in the absence of selective pressure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号