首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   16篇
  2023年   1篇
  2021年   1篇
  2019年   2篇
  2018年   1篇
  2016年   5篇
  2015年   3篇
  2014年   4篇
  2013年   5篇
  2012年   7篇
  2011年   9篇
  2010年   4篇
  2009年   3篇
  2008年   1篇
  2007年   4篇
  2006年   2篇
  2005年   2篇
  2004年   5篇
  2003年   6篇
  2002年   4篇
  2001年   4篇
  2000年   2篇
  1995年   1篇
  1991年   1篇
  1990年   1篇
  1985年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
排序方式: 共有86条查询结果,搜索用时 125 毫秒
51.
Wood is of critical importance to humans as a primary feedstock for biofuel, fiber, solid wood products, and various natural compounds including pharmaceuticals. The trunk wood of most tree species has two distinctly different regions: sapwood and heartwood. In addition to the major constituents, wood contains extraneous chemicals that can be removed by extraction with various solvents. The composition and the content of the extractives vary depending on such factors as, species, growth conditions, and time of year when the tree is cut. Despite the great commercial and keen scientific interest, little is known about the tree-specific biology of the formation of heartwood and its extractives. In order to gain insight on the molecular regulations of heartwood and its extractive formation, we carried out global examination of gene expression profiles across the trunk wood of black locust (Robinia pseudoacacia L.) trees. Of the 2,915 expressed sequenced tags (ESTs) that were generated and analyzed in the current study, 55.3% showed no match to known sequences. Cluster analysis of the ESTs identified a total of 2278 unigene sets, which were used to construct cDNA microarrays. Microarray hybridization analyses were then performed to survey the changes in gene expression profiles of trunk wood. The gene expression profiles of wood formation differ according to the region of trunk wood sampled, with highly expressed genes defining the metabolic and physiological processes characteristic of each region. For example, the gene encoding sugar transport had the highest expression in the sapwood, while the structural genes for flavonoid biosynthesis were up-regulated in the sapwood-heartwood transition zone. This analysis also established the expression patterns of 341 previously unknown genes.  相似文献   
52.
Despite the pivotal role of creatine (Cr) and phosphocreatine (PCr) in muscle metabolism, relatively little is known about sarcolemmal creatine transport, creatine transporter (CRT) isoforms, and subcellular localization of the CRT proteins. To be able to quantify creatine transport across the sarcolemma, we have developed a new in vitro assay using rat sarcolemmal giant vesicles. The rat giant sarcolemmal vesicle assay reveals the presence of a specific high-affinity and saturable transport system for Cr in the sarcolemma (Michaelis-Menten constant 52.4 +/- 9.4 microM and maximal velocity value 17.3 +/- 3.1 pmol x min(-1) x mg vesicle protein(-1)), which cotransports Cr into skeletal muscle together with Na(+) and Cl(-) ions. The regulation of Cr transport in giant vesicles by substrates, analogs, and inhibitors, as well as by phorbol 12-myristate 13-acetate and insulin, was studied. Two antibodies raised against COOH- and NH(2)-terminal synthetic peptides of CRT sequences both recognize two major polypeptides on Western blots with apparent molecular masses of 70 and 55 kDa, respectively. The highest CRT expression occurs in heart, brain, and kidney, and although creatine kinase is absent in liver cells, CRT is also found in this tissue. Surprisingly, immunofluorescence staining of cultured adult rat heart cardiomyocytes with specific anti-CRT antibodies, as well as cell fractionation and cell surface biotinylation studies, revealed that only a minor CRT species with an intermediate molecular mass of approximately 58 kDa is present in the sarcolemma, whereas the previously identified major CRT-related protein species of 70 and 55 kDa are specifically located in mitochondria. Our studies indicate that mitochondria may represent a major compartment of CRT localization, thus providing a new aspect to the current debate about the existence and whereabouts of intracellular Cr and PCr compartments that have been inferred from [(14)C]PCr/Cr measurements in vivo as well as from recent in vivo NMR studies.  相似文献   
53.
54.
55.
SUMMARY: We present PANAL, an integrated resource for protein sequence analysis. The tool allows the user to simultaneously search a protein sequence for motifs from several databases, and to view the result as an intuitive graphical summary.  相似文献   
56.

Background  

Meiosis is a critical process in the reproduction and life cycle of flowering plants in which homologous chromosomes pair, synapse, recombine and segregate. Understanding meiosis will not only advance our knowledge of the mechanisms of genetic recombination, but also has substantial applications in crop improvement. Despite the tremendous progress in the past decade in other model organisms (e.g., Saccharomyces cerevisiae and Drosophila melanogaster), the global identification of meiotic genes in flowering plants has remained a challenge due to the lack of efficient methods to collect pure meiocytes for analyzing the temporal and spatial gene expression patterns during meiosis, and for the sensitive identification and quantitation of novel genes.  相似文献   
57.
The aim of this work was to elucidate the oxidative folding mechanism of the macrocyclic cystine knot protein MCoTI-II. We aimed to investigate how the six-cysteine residues distributed on the circular backbone of the reduced unfolded peptide recognize their correct partner and join up to form a complex cystine-knotted topology. To answer this question, we studied the oxidative folding of the naturally occurring peptide using a range of spectroscopic methods. For both oxidative folding and reductive unfolding, the same disulfide intermediate species was prevalent and was characterized to be a native-like two-disulfide intermediate in which the Cys1-Cys18 disulfide bond was absent. Overall, the folding pathway of this head-to-tail cyclized protein was found to be similar to that of linear cystine knot proteins from the squash family of trypsin inhibitors. However, the pathway differs in an important way from that of the cyclotide kalata B1, in that the equivalent two-disulfide intermediate in that case is not a direct precursor of the native protein. The size of the embedded ring within the cystine knot motif appears to play a crucial role in the folding pathway. Larger rings contribute to the independence of disulfides and favor an on-pathway native-like intermediate that has a smaller energy barrier to cross to form the native fold. The fact that macrocyclic proteins are readily able to fold to a complex knotted structure in vitro in the absence of chaperones makes them suitable as protein engineering scaffolds that have remarkable stability.  相似文献   
58.
Epidemiological and phylogenetic studies of hepatitis C virus (HCV) have identified six major HCV genotypes and have attempted to characterize their origin and spread worldwide. Putative regions of endemic infection have been identified for all HCV genotypes except HCV genotype 5a. Although HCV genotype 5a was previously thought to be largely restricted to the northern part of South Africa, this study reports an unexpected cluster of the genotype in West Flanders Province in Belgium. To investigate the molecular epidemiology of this cluster and of HCV genotype 5a in general, a rigorous phylogenetic analysis of Belgian and South African HCV genotype 5a samples was performed. Remarkably, the Belgian and South African strains form two distinct clusters of similar diversity. We used a Bayesian coalescent method to estimate the rate of virus spread through time for HCV genotype 5a in both regions. Our results indicate that HCV genotype 5a strains have been spreading independently in Belgium and South Africa for more than 100 years, with a rate of spread characteristic of an epidemic genotype. These findings have major implications for tracing the origin of HCV genotype 5a. Here, we speculate about the possible origins of these clusters.  相似文献   
59.
The recognition that few human diseases are thoroughly addressed by mono-specific, monoclonal antibodies (mAbs) continues to drive the development of antibody therapeutics with additional specificities and enhanced activity. Historically, efforts to engineer additional antigen recognition into molecules have relied predominantly on the reformatting of immunoglobulin domains. In this report we describe a series of fully functional mAbs to which additional specificities have been imparted through the recombinant fusion of relatively short polypeptides sequences. The sequences are selected for binding to a particular target from combinatorial libraries that express linear, disulfide-constrained, or domain-based structures. The potential for fusion of peptides to the N- and C- termini of both the heavy and light chains affords the bivalent expression of up to four different peptides. The resulting molecules, called zybodies, can gain up to four additional specificities, while retaining the original functionality and specificity of the scaffold antibody. We explore the use of two clinically significant oncology antibodies, trastuzumab and cetuximab, as zybody scaffolds and demonstrate functional enhancements in each case. The affect of fusion position on both peptide and scaffold function is explored, and penta-specific zybodies are demonstrated to simultaneously engage five targets (ErbB2, EGFR, IGF-1R, Ang2 and integrin αvβ3). Bispecific, trastuzumab-based zybodies targeting ErbB2 and Ang2 are shown to exhibit superior efficacy to trastuzumab in an angiogenesis-dependent xenograft tumor model. A cetuximab-based bispecific zybody that targeting EGFR and ErbB3 simultaneously disrupted multiple intracellular signaling pathways; inhibited tumor cell proliferation; and showed efficacy superior to that of cetuximab in a xenograft tumor model.  相似文献   
60.
An early lead from the AMD070 program was optimized and a structure-activity relationship was developed for a novel series of heterocyclic containing compounds. Potent CXCR4 antagonists were identified based on anti-HIV-1 activity and Ca2+ flux inhibition that displayed good pharmacokinetics in rat and dog.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号