首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4787篇
  免费   463篇
  国内免费   3篇
  2022年   51篇
  2021年   98篇
  2020年   70篇
  2019年   87篇
  2018年   109篇
  2017年   93篇
  2016年   133篇
  2015年   222篇
  2014年   233篇
  2013年   275篇
  2012年   322篇
  2011年   304篇
  2010年   189篇
  2009年   162篇
  2008年   254篇
  2007年   234篇
  2006年   222篇
  2005年   224篇
  2004年   172篇
  2003年   189篇
  2002年   154篇
  2001年   113篇
  2000年   111篇
  1999年   106篇
  1998年   63篇
  1997年   50篇
  1996年   57篇
  1995年   43篇
  1994年   55篇
  1993年   40篇
  1992年   71篇
  1991年   63篇
  1990年   71篇
  1989年   45篇
  1988年   45篇
  1987年   43篇
  1986年   33篇
  1985年   42篇
  1984年   29篇
  1983年   39篇
  1982年   39篇
  1981年   27篇
  1980年   24篇
  1979年   27篇
  1978年   16篇
  1977年   26篇
  1976年   23篇
  1975年   24篇
  1974年   15篇
  1973年   17篇
排序方式: 共有5253条查询结果,搜索用时 15 毫秒
91.
Abstract— The objective of the present experiments was to correlate changes in cellular energy metabolism, dissipative ion fluxes, and lipolysis during the first 90 s of ischemia and, hence, to establish whether phospholipase A2or phospholipase C is responsible for the early accumulation of phospholipid hydrolysis products. Ischemia was induced for 15–90 s in rats, extracellular K+ (K+e) was recorded, and neocortex was frozen in situ for measurements of labile tissue metabolites, free fatty acids, and diacylglycerides. Ischemia of 15-and 30-s duration gave rise to a decrease in phosphocreatine concentration and a decline in the ATP/free ADP ratio. Although these changes were accompanied by an activation of K+ conductances, there were no changes in free fatty acids until after 60s, when free arachidonic acid accumulated. An increase in other free fatty acids and in total diacylglyceride content did not occur until after anoxic depolarization. The results demonstrate that the early functional changes, such as activation of K+ conductances, are unrelated to changes in lipids or lipid mediators. They furthermore suggest that the initial lipolysis occurs via both phospholipase A2 and phospholipase C, which are activated when membrane depolarization leads to influx of calcium into cells.  相似文献   
92.
Certain partly ordered protein conformations, commonly called “moltenglobule states,” are widely believed to represent protein folding intermediates. Recentstructural studies of molten globule states ofdifferent proteins have revealed features whichappear to be general in scope. The emergingconsensus is that these partly ordered forms exhibit a high content of secondary structure, considerable compactness, nonspecific tertiary structure, and significant structural flexibility. These characteristics may be used to define ageneral state of protein folding called “the molten globule state,” which is structurally andthermodynamically distinct from both the native state and the denatured state. Despite exaatensive knowledge of structural features of afew molten globule states, a cogent thermodynamic argument for their stability has not yetbeen advanced. The prevailing opinion of thelast decade was that there is little or no enthalpy difference or heat capacity differencebetween the molten globule state and the unfolded state. This view, however, appears to beat variance with the existing database of protein structural energetics and with recent estimates of the energetics of denaturation of α-lactalbumin, cytochrome c, apomyoglobin, and T4 lysozyme. We discuss these four proteins at length. The results of structural studies, together with the existing thermodynamic values for fundamental interactions in proteins, provide the foundation for a structural thermodynamic framework which can account for the observed behavior of molten globule states. Within this framework, we analyze the physical basis for both the high stability of several molten globule states and the low probability of other protential folding intermediates. Additionally, we consider, in terms of reduced enthalpy changes and disrupted cooperative interactions, the thermodynamic basis for the apparent absence of a thermally induced, cooperative unfolding transition for some molten globule states. © 1993 Wiley-Liss, Inc.  相似文献   
93.
Sex determination (SD) shows huge variation among fish and a high evolutionary rate, as illustrated by the Pleuronectiformes (flatfishes). This order is characterized by its adaptation to demersal life, compact genomes and diversity of SD mechanisms. Here, we assembled the Solea senegalensis genome, a flatfish of great commercial value, into 82 contigs (614 Mb) combining long- and short-read sequencing, which were next scaffolded using a highly dense genetic map (28,838 markers, 21 linkage groups), representing 98.9% of the assembly. Further, we established the correspondence between the assembly and the 21 chromosomes by using BAC-FISH. Whole genome resequencing of six males and six females enabled the identification of 41 single nucleotide polymorphism variants in the follicle stimulating hormone receptor (fshr) consistent with an XX/XY SD system. The observed sex association was validated in a broader independent sample, providing a novel molecular sexing tool. The fshr gene displayed differential expression between male and female gonads from 86 days post-fertilization, when the gonad is still an undifferentiated primordium, concomitant with the activation of amh and cyp19a1a, testis and ovary marker genes, respectively, in males and females. The Y-linked fshr allele, which included 24 nonsynonymous variants and showed a highly divergent 3D protein structure, was overexpressed in males compared to the X-linked allele at all stages of gonadal differentiation. We hypothesize a mechanism hampering the action of the follicle stimulating hormone driving the undifferentiated gonad toward testis.  相似文献   
94.
Plasmepsin (Plm) has been identified as an important target for the development of new antimalarial drugs, since its inhibition leads to the starvation of Plasmodium falciparum. A series of substrate-based dipeptide-type Plm II inhibitors containing the hydroxymethylcarbonyl isostere as a transition-state mimic were synthesized. The general design principle was provision of a conformationally restrained hydroxyl group (corresponding to the set residue at the P2' position in native substrates) and a bulky unit to fit the S2' pocket.  相似文献   
95.
Summary Short peptides spanning the helicoidal sequences of the uteroglobin monomer (crystal forms P21 and C2221) were synthesized and studied by circular dichroism spectroscopy. None of them showed any secondary structure in the absence of HFIP. However, most peptides achieved a helical conformation when this structuring agent was used, with the exception of the analogue corresponding to the helicoidal fragment 19–24 (helix II, crystal P21). These results indicate that other factors, such as interchain interactions, have to contribute to helix stabilization in the molecule. On the other hand, while peptides corresponding to N- and C-terminal fragments that contain the first and fourth helices of the monomer, respectively (1–14 and 48–70) achieved a -like structure when 10–15% of HFIP was used, this behaviour was not observed when TFE was used. Moreover, substitution of cysteine by -aminobutyric acid at position 3 increased both the helicity of fragment 1–14 and its ability to adopt a -like structure, but the opposite effect was observed for fragment 48–70 when -aminobutyric acid was introduced at position 69. These results indicate that this part of the protein might be sensitive to the chemical environment it is exposed to and that the two cysteine residues at positions 3 and 69 of the monomer could play a different role in the folding process.  相似文献   
96.
Administration of neutralizing monoclonal antibody to gamma interferon increased Theiler's virus-induced demyelination and virus antigen persistence in the spinal cord in susceptible SJL/J mice and completely abrogated resistance such that all C57BL/10SNJ mice developed demyelination. These experiments support the hypothesis that gamma interferon is critically important for resistance to Theiler's virus-induced disease but is not required for myelin destruction.  相似文献   
97.
98.
OBJECTIVE: To compare the relation between inequalities in long-term disability and income in the 17 regions of Spain. DESIGN: Data were taken from the survey on impairments, disabilities, and handicaps that was carried out in Spain in 1986. For each region the inequality in long-term disability associated with income was calculated as the odds ratio associated with reducing monthly household income by 10,000 pesetas (about Ponds 50) (estimate of effect of inequality of income) and the odds ratio for the inequality in long-term disability between those at the bottom and those at the top of the income hierarchy (relative index of inequality). MAIN OUTCOME MEASURE: Prevalence of long-term disability. RESULTS: Five of the eight regions where lowering income had a greater effect on long-term disability were among those with the lowest income per head, while six of the remaining nine regions where the effect was smaller were among those with the highest income per head. Three regions with the highest estimate of relative index of inequality had the highest estimate of effect, and another three regions with the lowest estimate of relative index of inequality had the lowest estimate of effect. In contrast, the relative position of the remaining 11 regions varied from one measure to another. CONCLUSIONS: These results support the theory that additional increments in material wellbeing have a negligible effect on health in countries with high socioeconomic development. However, inequality in income distribution did not determine inequality in health between those at the bottom and those at the top of the income hierarchy in many Spanish regions.  相似文献   
99.
Cell death by apoptosis is a tightly regulated process that requires coordinated modification in cellular architecture. The caspase protease family has been shown to play a key role in apoptosis. Here we report that specific and ordered changes in the actin cytoskeleton take place during apoptosis.

In this context, we have dissected one of the first hallmarks in cell death, represented by the severing of contacts among neighboring cells. More specifically, we provide demonstration for the mechanism that could contribute to the disassembly of cytoskeletal organization at cell–cell adhesion. In fact, β-catenin, a known regulator of cell–cell adhesion, is proteolytically processed in different cell types after induction of apoptosis. Caspase-3 (cpp32/apopain/yama) cleaves in vitro translated β-catenin into a form which is similar in size to that observed in cells undergoing apoptosis. β-Catenin cleavage, during apoptosis in vivo and after caspase-3 treatment in vitro, removes the amino- and carboxy-terminal regions of the protein. The resulting β-catenin product is unable to bind α-catenin that is responsible for actin filament binding and organization. This evidence indicates that connection with actin filaments organized at cell–cell contacts could be dismantled during apoptosis. Our observations suggest that caspases orchestrate the specific and sequential changes in the actin cytoskeleton occurring during cell death via cleavage of different regulators of the microfilament system.

  相似文献   
100.
In a previous publication (Rodriguez, M.L., M. Brignoni, and P.J.I. Salas. 1994. J. Cell Sci. 107: 3145–3151), we described the existence of a terminal web-like structure in nonbrush border cells, which comprises a specifically apical cytokeratin, presumably cytokeratin 19. In the present study we confirmed the apical distribution of cytokeratin 19 and expanded that observation to other epithelial cells in tissue culture and in vivo. In tissue culture, subconfluent cell stocks under continuous treatment with two different 21-mer phosphorothioate oligodeoxy nucleotides that targeted cytokeratin 19 mRNA enabled us to obtain confluent monolayers with a partial (40–70%) and transitory reduction in this protein. The expression of other cytoskeletal proteins was undisturbed. This downregulation of cytokeratin 19 resulted in (a) decrease in the number of microvilli; (b) disorganization of the apical (but not lateral or basal) filamentous actin and abnormal apical microtubules; and (c) depletion or redistribution of apical membrane proteins as determined by differential apical–basolateral biotinylation. In fact, a subset of detergent-insoluble proteins was not expressed on the cell surface in cells with lower levels of cytokeratin 19. Apical proteins purified in the detergent phase of Triton X-114 (typically integral membrane proteins) and those differentially extracted in Triton X-100 at 37°C or in n-octyl-β-d-glycoside at 4°C (representative of GPIanchored proteins), appeared partially redistributed to the basolateral domain. A transmembrane apical protein, sucrase isomaltase, was found mispolarized in a subpopulation of the cells treated with antisense oligonucleotides, while the basolateral polarity of Na+– K+ATPase was not affected. Both sucrase isomaltase and alkaline phosphatase (a GPI-anchored protein) appeared partially depolarized in A19 treated CACO-2 monolayers as determined by differential biotinylation, affinity purification, and immunoblot. These results suggest that an apical submembrane cytoskeleton of intermediate filaments is expressed in a number of epithelia, including those without a brush border, although it may not be universal. In addition, these data indicate that this structure is involved in the organization of the apical region of the cytoplasm and the apical membrane.Cell polarity (asymmetry) is a broadly distributed and highly conserved feature of many different cell types, from prokaryotes to higher eukaryotes (Nelson, 1992). In multicellular organisms it is more conspicuous in, but not restricted to, neurons and epithelial cells. In the latter, the plasma membrane is organized in two different domains, apical and basolateral. This characteristic enables epithelia to accomplish their most specialized roles including absorption and secretion and, in general, to perform the functions of organs with an epithelial parenchyma such as the kidney, liver, intestine, stomach, exocrine glands, etc. (Simons and Fuller, 1985; Rodriguez-Boulan and Nelson, 1989).The acquisition and maintenance of epithelial polarity is based on multiple interrelated mechanisms that may work in parallel. Although the origin of polarization depends on the sorting of apical and basolateral membrane proteins at the trans-Golgi network (Simons and Wandinger-Ness, 1990), the mechanisms involved in the transport of apical or basolateral carrier vesicles, the specific fusion of such vesicles to the appropriate domain, and the retention of membrane proteins in their correct positions are also important (Wollner and Nelson, 1992). Various components of the cytoskeleton seem to be especially involved in these mechanisms (Mays et al., 1994). Among them, the microtubules, characteristically oriented in the apical–basal axis with their minus ends facing toward the apical domain, appear in a strategic position to transport carrier vesicles (Bacallao et al., 1989). This orientation is largely expected because of the apical distribution of centrioles and microtubule organizing centers in epithelial cells (Buendia et al., 1990). The molecular interactions responsible for that localization, however, are unknown.Actin is a widespread component of the membrane skeleton found under apical, lateral, and basal membranes in a nonpolarized fashion (Drenckhahn and Dermietzel, 1988; Vega-Salas et al., 1988). Actin bundling into microvillus cores in the presence of villin/fimbrin, on the other hand, is highly polarized to the apical domain (Ezzell et al., 1989; Louvard et al., 1992). In fact, different isoforms of plastins determine microvillus shape in a tissue-specific manner (Arpin et al., 1994b ). Why this arrangement is not found in other actin-rich regions of the cell is unclear (Louvard et al., 1992; Fath and Burgess, 1995).Fodrin, the nonerythroid form of spectrin, underlies the basolateral domain (Nelson and Veshnock, 1987a ,b) and is known to participate in the anchoring/retention of basolateral proteins (Drenckhahn et al., 1985; Nelson and Hammerton, 1989). Although different groups have found specific cytoskeletal anchoring of apical membrane proteins at the “correct” domain (Ojakian and Schwimmer, 1988; Salas et al., 1988; Parry et al., 1990), no specific apical counterpart of the basolateral fodrin cytoskeleton is known. This is especially puzzling since we showed that MDCK cells can maintain apical polarity in the absence of tight junctions, an indication that intradomain retention mechanisms are operational for apical membrane proteins (Vega-Salas et al., 1987a ).It is known that a network of intermediate filament (IF)1, the major component of the terminal web, bridges the desmosomes under the apical membrane in brush border cells (Franke et al., 1979; Hull and Staehelin, 1979; Mooseker, 1985), although no specific protein has been identified with this structure. The observation of a remarkable resistance to extractions of apical proteins anchored to cytoskeletal preparations (Salas et al., 1988) comparable to that of intermediate filaments, led us to the study of cytokeratins in polarized cells. We developed an antibody against a 53-kD intermediate filament protein in MDCK cells. This protein was found to be distributed exclusively to the apical domain and to form large (2,900 S) multi-protein complexes with apical plasma membrane proteins. Internal microsequencing of the 53-kD protein showed very high (95– 100%) homology with two polypeptides in the rod domain of cytokeratin 19 (CK19; Moll et al., 1982) a highly conserved and peculiar intermediate filament protein (Bader et al., 1986). A complete identification however, could not be achieved (Rodriguez et al., 1994). The present study was undertaken to establish that identity and to determine the possible functions of this apical membrane skeleton. Because cytokeratins have been poorly characterized in canine cells, and no cytokeratin sequences are available in this species, we decided to switch from MDCK cells to two human epithelial cell lines, CACO-2, an extensively studied model of epithelial polarization that differentiates in culture to form brush border containing cells (Pinto et al., 1983), and MCF-10A (Tait et al., 1990), a nontumorigenic cell line derived from normal mammary epithelia, as a model of nonbrush border cells.To assess possible functions of cytokeratin 19, we chose to selectively reduce its synthesis using anti-sense phosphorothioate oligodeoxy nucleotides, an extensively used approach in recent years (e.g., Ferreira et al., 1992 ; Hubber et al., 1993; Takeuchi et al., 1994). Although we could not achieve a complete knock out, the steady-state levels of cytokeratin 19 were decreased to an extent that enabled us to detect significant changes in the phenotype of CACO-2 and MCF-10A cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号