首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3024篇
  免费   307篇
  2021年   21篇
  2018年   22篇
  2017年   27篇
  2016年   32篇
  2015年   68篇
  2014年   81篇
  2013年   105篇
  2012年   124篇
  2011年   109篇
  2010年   100篇
  2009年   88篇
  2008年   123篇
  2007年   123篇
  2006年   108篇
  2005年   113篇
  2004年   106篇
  2003年   103篇
  2002年   107篇
  2001年   54篇
  2000年   52篇
  1999年   38篇
  1998年   44篇
  1997年   35篇
  1996年   26篇
  1995年   35篇
  1993年   26篇
  1992年   34篇
  1991年   40篇
  1990年   32篇
  1989年   25篇
  1988年   39篇
  1987年   44篇
  1986年   35篇
  1985年   32篇
  1984年   44篇
  1983年   30篇
  1982年   33篇
  1981年   34篇
  1980年   27篇
  1979年   34篇
  1978年   34篇
  1977年   45篇
  1976年   32篇
  1975年   31篇
  1974年   38篇
  1973年   33篇
  1972年   24篇
  1971年   25篇
  1970年   22篇
  1969年   23篇
排序方式: 共有3331条查询结果,搜索用时 203 毫秒
951.
Cardiac protective signaling networks have been shown to involve PKCepsilon. However, the molecular mechanisms by which PKCepsilon interacts with other members of these networks to form task-specific modules remain unknown. Among 93 different PKCepsilon-associated proteins that have been identified, Akt and endothelial nitric oxide (NO) synthase (eNOS) are of importance because of their independent abilities to promote cell survival and prevent cell death. The simultaneous association of PKCepsilon, Akt, and eNOS has not been examined, and, in particular, the formation of a module containing these three proteins and the role of such a module in the regulation of NO production and cardiac protection are unknown. The present study was undertaken to determine whether these molecules form a signaling module and, thereby, play a collective role in cardiac signaling. Using recombinant proteins in vitro and PKCepsilon transgenic mouse hearts, we demonstrate the following: 1) PKCepsilon, Akt, and eNOS interact and form signaling modules in vitro and in the mouse heart. Activation of either PKCepsilon or Akt enhances the formation of PKCepsilon-Akt-eNOS signaling modules. 2) PKCepsilon directly phosphorylates and enhances activation of Akt in vitro, and PKCepsilon activation increases phosphorylation and activation of Akt in PKCepsilon transgenic mouse hearts. 3) PKCepsilon directly phosphorylates eNOS in vitro, and this phosphorylation enhances eNOS activity. Activation of PKCepsilon in vivo increased phosphorylation of eNOS at Ser(1177), indicating eNOS activation. This study characterizes, for the first time, the physical, as well as functional, coupling of PKCepsilon, Akt, and eNOS in the heart and implicates these PKCepsilon-Akt-eNOS signaling modules as critical signaling elements during PKCepsilon-induced cardiac protection.  相似文献   
952.
Primary brain tumors (gliomas) often present with peritumoral edema. Their ability to thrive in this osmotically altered environment prompted us to examine volume regulation in human glioma cells, specifically the relative contribution of Cl channels and transporters to this process. After a hyposmotic challenge, cultured astrocytes, D54-MG glioma cells, and glioma cells from human patient biopsies exhibited a regulatory volume decrease (RVD). Although astrocytes were not able to completely reestablish their original prechallenge volumes, glioma cells exhibited complete volume recovery, sometimes recovering to a volume smaller than their original volumes (VPost-RVD < Vbaseline). In glioma cells, RVD was largely inhibited by treatment with a combination of Cl channel inhibitors, 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) and Cd2+ (VPost-RVD > 1.4*Vbaseline). Volume regulation was also attenuated to a lesser degree by the addition of R-(+)-[(2-n-butyl-6,7-dichloro-2-cyclopentyl-2,3-dihydro-1-oxo-1H-inden-5-yl)oxy]acetic acid (DIOA), a known K+-Cl cotransporter (KCC) inhibitor. To dissect the relative contribution of channels vs. transporters in RVD, we took advantage of the comparatively high temperature dependence of transport processes vs. channel-mediated diffusion. Cooling D54-MG glioma cells to 15°C resulted in a loss of DIOA-sensitive volume regulation. Moreover, at 15°C, the channel blockers NPPB + Cd2+ completely inhibited RVD and cells behaved like perfect osmometers. The calculated osmolyte flux during RVD under these experimental conditions suggests that the relative contribution of Cl channels vs. transporters to this process is 60–70% and 30–40%, respectively. Finally, we identified several candidate proteins that may be involved in RVD, including the Cl channels ClC-2, ClC-3, ClC-5, ClC-6, and ClC-7 and the transporters KCC1 and KCC3a. voltage-gated chloride channel family; potassium-chloride cotransporters; peritumoral edema  相似文献   
953.
A ciliate parasite, tentatively identified as Mesanophrys sp. of Norway lobsters Nephrops norvegicus, is demonstrated to secrete several proteases into the culture medium (modified Nephrops saline). Analyses using substrate-impregnated sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE) revealed 12 activity bands differing greatly in mobility in the gels. The complete inhibition of proteolytic activity by 1,10-phenanthroline indicated that the proteases are of the metallo class. The proteases were active at the physiological temperature (8 degrees C) and haemolymph pH (7.8) of the host. The proteases were selective in the degradation of several host proteins, including the myosin heavy chain, which is a major structural component of lobster muscle. Consequently, these proteases may have important roles in several aspects of the host-parasite interaction including invasion, nutrient uptake by the ciliate, and pathogenesis.  相似文献   
954.
The ionizing-radiation-resistant fractions of two soil bacterial communities were investigated by exposing an arid soil from the Sonoran Desert and a nonarid soil from a Louisiana forest to various doses of ionizing radiation using a (60)Co source. The numbers of surviving bacteria decreased as the dose of gamma radiation to which the soils were exposed increased. Bacterial isolates surviving doses of 30 kGy were recovered from the Sonoran Desert soil, while no isolates were recovered from the nonarid forest soil after exposure to doses greater than 13 kGy. The phylogenetic diversities of the surviving culturable bacteria were compared for the two soils using 16S rRNA gene sequence analysis. In addition to a bacterial population that was more resistant to higher doses of ionizing radiation, the diversity of the isolates was greater in the arid soil. The taxonomic diversity of the isolates recovered was found to decrease as the level of ionizing-radiation exposure increased. Bacterial isolates of the genera Deinococcus, Geodermatophilus, and Hymenobacter were still recovered from the arid soil after exposure to doses of 17 to 30 kGy. The recovery of large numbers of extremely ionizing-radiation-resistant bacteria from an arid soil and not from a nonarid soil provides further ecological support for the hypothesis that the ionizing-radiation resistance phenotype is a consequence of the evolution of other DNA repair systems that protect cells against commonly encountered environmental stressors, such as desiccation. The diverse group of bacterial strains isolated from the arid soil sample included 60 Deinococcus strains, the characterization of which revealed nine novel species of this genus.  相似文献   
955.
956.
A major role for zygotic hunchback in patterning the Nasonia embryo   总被引:2,自引:0,他引:2  
Developmental genetic analysis has shown that embryos of the parasitoid wasp Nasonia vitripennis depend more on zygotic gene products to direct axial patterning than do Drosophila embryos. In Drosophila, anterior axial patterning is largely established by bicoid, a rapidly evolving maternal-effect gene, working with hunchback, which is expressed both maternally and zygotically. Here, we focus on a comparative analysis of Nasonia hunchback function and expression. We find that a lesion in Nasonia hunchback is responsible for the severe zygotic headless mutant phenotype, in which most head structures and the thorax are deleted, as are the three most posterior abdominal segments. This defines a major role for zygotic Nasonia hunchback in anterior patterning, more extensive than the functions described for hunchback in Drosophila or Tribolium. Despite the major zygotic role of Nasonia hunchback, we find that it is strongly expressed maternally, as well as zygotically. Nasonia Hunchback embryonic expression appears to be generally conserved; however, the mRNA expression differs from that of Drosophila hunchback in the early blastoderm. We also find that the maternal hunchback message decays at an earlier developmental stage in Nasonia than in Drosophila, which could reduce the relative influence of maternal products in Nasonia embryos. Finally, we extend the comparisons of Nasonia and Drosophila hunchback mutant phenotypes, and propose that the more severe Nasonia hunchback mutant phenotype may be a consequence of differences in functionally overlapping regulatory circuitry.  相似文献   
957.
Hydrosalpinx (HSP) has been shown to be detrimental to the outcome of assisted reproduction, but little is known of its pathology. This prospective study examined and detailed ultrastructural characterization of HSP of infertile women presenting for assisted reproductive treatments. Both light and electron microscopies were used to characterize HSP. Hematoxylin and eosin staining of HSP showed areas without epithelial cell lining or with abnormalities such as flattening of the epithelial layer and exfoliation of epithelial cells with occasional normal columnar epithelial lining. HSP muscle fibers were atrophic and occasionally replaced by fibrous tissues, or separated by areas of severe edema. Inflammatory cells could be found in hydrosalpinx fluid (HF) in the lumen in areas with flattened to no epithelial cells, without epithelial lining, as well as in dilated blood vessels and/or lymph vessels. Scanning electron microscopy of the epithelial surface revealed epithelial denudation-severe loss of both cilia and microvilli and stomata exuding globular bodies on eroded ampulla surfaces. Severe chronic inflammation and damage to the epithelial lining and musculature of Fallopian tubes and the presence of inflammatory cells provides an explanation for HF formation, and thus for the detrimental effects of HF on reproductive processes and IVF outcome.  相似文献   
958.
Mature adhesions in a motile fibroblast can be classified as stationary "towing" adhesions in the front and sliding trailing adhesions that resist the traction force. Adhesions formed at the front of motile fibroblasts rarely reach the trailing zone, due to disassembly promoted by intensive microtubule targeting. Here, we show that the majority of adhesions found at the trailing edge originate within small short-lived protrusions that extend laterally and backwards from the cell edge. These adhesions enlarge by sliding and by fusion with neighboring adhesions. A further subset of trailing adhesions is initiated at a novel site proximal to trailing stress fibre termini. Following tail retraction, trailing adhesions are actively regenerated and the stress fibre system is remodeled accordingly; the tensile forces elaborated by the contractile actin system are consequently redirected according to trailing adhesion location. We conclude that persistent and dynamic anchorage of the cell rear is needed for the maintenance of continuous unidirectional movement of fibroblasts.  相似文献   
959.
960.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号