首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   133篇
  免费   3篇
  136篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2016年   2篇
  2015年   7篇
  2014年   5篇
  2013年   9篇
  2012年   10篇
  2011年   8篇
  2010年   7篇
  2009年   9篇
  2008年   13篇
  2007年   13篇
  2006年   6篇
  2005年   7篇
  2004年   9篇
  2003年   6篇
  2002年   3篇
  1999年   2篇
  1998年   1篇
  1995年   1篇
  1992年   1篇
  1970年   1篇
  1963年   1篇
  1962年   1篇
  1926年   1篇
  1925年   1篇
  1924年   2篇
  1923年   2篇
  1922年   1篇
  1910年   1篇
排序方式: 共有136条查询结果,搜索用时 15 毫秒
131.
The synthesis of a new class of 9-(S)-dihydroerythromycin derivatives and their anti-inflammatory activity on in vivo PMA assay are described. Modifying the desosamine sugar on the C-3' amino group, it was possible to differentiate between anti-biotic and anti-inflammatory action. The compounds are completely devoid of anti-microbial effects but their anti-inflammatory properties are enhanced. These results strongly suggest the potential of macrolides as a new class of anti-inflammatory agents.  相似文献   
132.
133.
Thyroid hormone action, widely recognized on cell proliferation and metabolism, has recently been related to the phosphoinositide 3 kinase (PI3K), an upstream regulator of the Akt kinase and the involvement of the thyroid hormone receptor β1 has been hypothesized. The serine‐threonine kinase Akt can regulate various substrates that drive cell mass proliferation and survival. Its action has also been characterized in pancreatic β‐cells. We previously demonstrated that Akt activity and its activation in the insulinoma cell line hCM could be considered a specific target of the non‐genomic action of T3. In this study we analyzed the molecular pathways involved in the regulation of cell proliferation, survival, size, and protein synthesis by T3 in a stable TRβ1 interfered insulinoma cell line, derived from the hCM, and evidenced a strong regulation of both physiological and molecular events by T3 mediated by the thyroid hormone receptor β1. We showed that the thyroid receptor β1 mediates the T3 regulation of the cdk4·cyc D1·p21CIP1·p27KIP1 complex formation and activity. In addition TRβ1 is essential for the T3 upregulation of the Akt targets β‐catenin, p70S6K, and for the phosphorylation of Bad and mTOR. We demonstrated that the β1 receptor mediates the T3 upregulation of protein synthesis and cell size, together with the cell proliferation and survival, playing a crucial role in the T3 regulation of the PI3K/Akt pathway. J. Cell. Biochem. 106: 835–848, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
134.
The short-term response of the resident soil bacterial and fungal communities to the addition of 5% (w/w) of either dry olive mill residue (DOR), DOR treated with Phlebia sp. (PTDOR) or DOR previously extracted with water (WEDOR) was investigated. As opposed to bacteria, the diversity of fungi increased upon the amendments as assessed by denaturing gradient gel electrophoresis of 18S rDNA. Over the first 30 days, phospholipid fatty acids analyses indicated a gradual decrease in the relative abundances of Gram+ bacteria (from 44.8% to 37.9%) and a concomitant increase of Gram bacteria (from 37.3% to 51.2%) in DOR-amended soil. A considerable increase in the fungal/bacterial ratio was observed after 7 days in DOR, WEDOR and PTDOR-amended soils with respect to the control (0.316, 0.165 and 0.265, respectively, vs. 0.011). The overall microbial activity was stimulated by the amendments as indicated by the higher activity levels of both dehydrogenase and fluorescein diacetate hydrolase. These results indicate that DOR at the application level examined is not toxic on soil microorganisms.  相似文献   
135.
136.
We performed ultra-deep methylation analysis at single molecule level of the promoter region of developmentally regulated D-Aspartate oxidase (Ddo), as a model gene, during brain development and embryonic stem cell neural differentiation. Single molecule methylation analysis enabled us to establish the effective epiallele composition within mixed or pure brain cell populations. In this framework, an epiallele is defined as a specific combination of methylated CpG within Ddo locus and can represent the epigenetic haplotype revealing a cell-to-cell methylation heterogeneity. Using this approach, we found a high degree of polymorphism of methylated alleles (epipolymorphism) evolving in a remarkably conserved fashion during brain development. The different sets of epialleles mark stage, brain areas, and cell type and unravel the possible role of specific CpGs in favoring or inhibiting local methylation. Undifferentiated embryonic stem cells showed non-organized distribution of epialleles that apparently originated by stochastic methylation events on individual CpGs. Upon neural differentiation, despite detecting no changes in average methylation, we observed that the epiallele distribution was profoundly different, gradually shifting toward organized patterns specific to the glial or neuronal cell types. Our findings provide a deep view of gene methylation heterogeneity in brain cell populations promising to furnish innovative ways to unravel mechanisms underlying methylation patterns generation and alteration in brain diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号