首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   244篇
  免费   12篇
  国内免费   7篇
  2023年   1篇
  2022年   2篇
  2021年   3篇
  2020年   1篇
  2019年   4篇
  2018年   5篇
  2017年   10篇
  2016年   3篇
  2015年   4篇
  2014年   12篇
  2013年   12篇
  2012年   18篇
  2011年   15篇
  2010年   16篇
  2009年   10篇
  2008年   9篇
  2007年   9篇
  2006年   12篇
  2005年   6篇
  2004年   10篇
  2003年   7篇
  2002年   17篇
  2001年   10篇
  2000年   12篇
  1999年   4篇
  1998年   9篇
  1997年   7篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1992年   3篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   5篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1971年   3篇
  1968年   2篇
  1967年   1篇
  1965年   1篇
排序方式: 共有263条查询结果,搜索用时 15 毫秒
71.
目的:探讨患者创伤后发生急性肾损伤的患者发病率、临床特点以及发病危险因素,以便有效预防和及早治疗。方法:回顾性分析我院重症监护室2004年1月至2010年12月收治的创伤患者相关临床资料,分析创伤后急性肾损伤的发病率以及发病危险因素。结果:共有106例患者纳入我们的研究,其中47例患者创伤后并发急性肾损伤。在发生急性肾损伤患者中,平均年龄为31±19岁,84.6%为男性;其中25例为脓毒血症引起,18例是因为低血压导致急性肾功能损伤。所有患者中,24例患者出现了少尿的症状,19例患者进行了透析治疗。腹部外伤[(OR)=3.66,P=0.027]和应用呋塞米[(OR=4.10,P=0.026)]是发生急性肾损伤的危险因素。结论:急性肾损伤时创伤后的严重并发症之一,死亡率高。只有找到创伤后发生急性肾损伤的危险因素,才能有效预防和及早治疗。  相似文献   
72.
目的:探讨与研究三磷酸腺苷结合盒转运体A1 (Adenosine triphosphate (ATP)-binding cassette transporter A1)基因多态性R219K与帕金森症(Parkinson disease,PD)和阿尔兹海默症(Alzheimer disease,AD)发病率的相关性。方法:选择2016年2月到2019年8月在本院门诊与住院的帕金森症患者42例作为PD组,同期选择本院门诊与住院的阿尔兹海默症患者42例作为AD组,同期选择本院门诊健康体检者84例作为对照组。调查入选者的一般资料,检测三组血液样本的ABCA1基因多态性R219K情况并进行相关性分析。结果:AD组低密度脂蛋白(low-density lipoprotein,LDL-C)、总胆固醇(total cholesterol,TC)、甘油三酯(triglyceride,TG)与尿酸(Uric acid,UA)均低于对照组,而高密度脂蛋白(high-density lipoprotein,HDL-C)、同型半胱氨酸(homocysteine,Hcy)值高于对照组(P0.05);AD组TC均低于PD组,而HDL高于PD组。PD患者HDL-C均低于对照组,而LDL、TC和TG与对照组无差异(P0.05),三组空腹血糖(Fasting blood glucose,FBG)值对比差异无统计学意义(P0.05)。PD组与AD组的ABCA1 R219K GA基因型、A等位基因频率都显著高于对照组(P0.05),PD组与AD组对比差异无统计学意义(P0.05)。在168例入选者中,直线相关分析显示ABCA1 R219K GA基因型与A等位基因与帕金森症或阿尔兹海默症发生有显著相关性(P0.05)。结论:ABCA1基因多态性R219K在帕金森症和阿尔兹海默症患者中比较常见,ABCA1 R219K GA基因型与A等位基因可诱发帕金森症和阿尔兹海默症的发生。  相似文献   
73.
74.
Intravenous administration of cannabinoid (CB) receptor agonists (HU-210, 0.1 mg/kg; ACPA, 0.125 mg/kg; methanandamide, 2.5 mg/kg; and anandamide, 2.5 mg/kg) induced bradycardia in chloralose-anesthetized rats irrespective of the solubilization method. Methanandamide, HU-210, and ACPA had no effect on the electrophysiological activity of the heart, while anandamide increased the duration of the QRS complex. The negative chronotropic effect of HU-210 was due to CB1 receptor activation since it was not observed after CB1 receptor blockade by SR141716A (1 mg/kg intravenously) but was present after pretreatment with CB2 receptor antagonist SR144528 (1 mg/kg intravenously). CB receptor antagonists SR141716A and SR144528 had no effect on cardiac rhythm or ECG indices. Hence, in the intact heart, endogenous CB receptor agonists are not involved in the regulation of cardiac rhythm and electrophysiological processes. The chronotropic effect of CBs was independent of the autonomic nervous system because it remained significant after autonomic ganglion blockade by hexamethonium (1 mg/kg intravenously). CB receptor activation by HU-210 (0.1 and 1 μM) in vitro decreased the rate and force of isolated heart contractions, the rates of contraction and relaxation, and end diastolic pressure. The negative chronotropic effect of HU-210 was less pronounced in vitro than in vivo. The maximum inotropic effect of HU-210 was reached at the concentration of 0.1 μM.  相似文献   
75.
The symptoms of Clostridium difficile infections are caused by two exotoxins, TcdA and TcdB, which target host colonocytes by binding to unknown cell surface receptors, at least in part via their combined repetitive oligopeptide (CROP) domains. A combination of the anti-TcdA antibody actoxumab and the anti-TcdB antibody bezlotoxumab is currently under development for the prevention of recurrent C. difficile infections. We demonstrate here through various biophysical approaches that bezlotoxumab binds to specific regions within the N-terminal half of the TcdB CROP domain. Based on this information, we solved the x-ray structure of the N-terminal half of the TcdB CROP domain bound to Fab fragments of bezlotoxumab. The structure reveals that the TcdB CROP domain adopts a β-solenoid fold consisting of long and short repeats and that bezlotoxumab binds to two homologous sites within the CROP domain, partially occluding two of the four putative carbohydrate binding pockets located in TcdB. We also show that bezlotoxumab neutralizes TcdB by blocking binding of TcdB to mammalian cells. Overall, our data are consistent with a model wherein a single molecule of bezlotoxumab neutralizes TcdB by binding via its two Fab regions to two epitopes within the N-terminal half of the TcdB CROP domain, partially blocking the carbohydrate binding pockets of the toxin and preventing toxin binding to host cells.  相似文献   
76.
The genes encoding the mevalonate-based farnesyl pyrophosphate (FPP) biosynthetic pathway were encoded in two operons and expressed in Escherichia coli to increase the production of sesquiterpenes. Inefficient translation of several pathway genes created bottlenecks and led to the accumulation of several pathway intermediates, namely, mevalonate and FPP, and suboptimal production of the sesquiterpene product, amorphadiene. Because of the difficulty in choosing ribosome binding sites (RBSs) to optimize translation efficiency, a combinatorial approach was used to choose the most appropriate RBSs for the genes of the lower half of the mevalonate pathway (mevalonate to amorphadiene). RBSs of various strengths, selected based on their theoretical strengths, were cloned 5′ of the genes encoding mevalonate kinase, phosphomevalonate kinase, mevalonate diphosphate decarboxylase, and amorphadiene synthase. Operons containing one copy of each gene and all combinations of RBSs were constructed and tested for their impact on growth, amorphadiene production, enzyme level, and accumulation of select pathway intermediates. Pathways with one or more inefficiently translated enzymes led to the accumulation of pathway intermediates, slow growth, and low product titers. Choosing the most appropriate RBS combination and carbon source, we were able to reduce the accumulation of toxic metabolic intermediates, improve growth, and improve the production of amorphadiene approximately fivefold. This work demonstrates that balancing flux through a heterologous pathway and maintaining steady growth are key determinants in optimizing isoprenoid production in microbial hosts.  相似文献   
77.
78.
The antioxidant properties of exine polymer matrix which forms the outer layer of pollen grain wall were studied. The main component of this matrix is sporopollenin - a unique biopolymer resistant to mechanical and chemical damage. The samples of isolated exine, purified from soluble compounds, were studied with EPR using stable nitroxyl radical TEMPO and DMPO spin trap. At the same time, we analyzed changes in fluorescence of DCFH which detected ROS in the solution. It has been established that exine effectively reduces TEMPO radical and eliminates hydroxyl radical. Also, the fluorometric analysis demonstrated that the exine eliminated H2O2, and this ability significantly decreased after treatment of exine with feruloyl esterase or mild alkaline hydrolysis (1M NaOH), i.e. after hydrolysis of hydroxycinnamic acid esters. After harsh hydrolysis (4M NaOH, 170 degrees C) of ethers bonds a large amount of hydroxycinnamic acids has been released, and exines have lost their antioxidant capacity almost completely. The obtained results point to the ability of extracellular polymer matrix of the exine to eliminate free radicals and H2O2 during crucial periods of male gametophyte development. The participation of ferulic acid and, possibly, of other hydroxycinnamic acids of sporopollenin in these processes has been demonstrated.  相似文献   
79.
Behavior and brain electrical activity of 79 male Wistar rats (intact and with acute experimental brainstem injury) were studied during the course of therapeutic transcranial electromagnetic stimulation (TEMS) with frequencies 60 and 70 Hz. In intact animals this effect was accompanied by a decrease in voluntary motor activity and increase in synchronization of the brain electrical activity, in particular, in the delta and beta1 frequency ranges. This inhibitory effect was similar to that of sleep. In the early period of acute experimental stem pathology, the TEMS course was accompanied by suppression of EEG signs of adaptive post-operative stress response and could lead to increased severity of the condition of an animal, along with the slowing of postoperative recovery. Cytomorphological evidence was obtained to the importance of vascular factor in the formation of cerebral reactions to TEMS.  相似文献   
80.
The regulatory role of intracellular pH changes and of transmembrane Cl transport in the activation of Nicotiana tabacum L. pollen grains at a stage preceding in vitro germination was studied. The acidification of the cytosol with propionic acid hindered the germination of pollen grains, whereas its alkalization by fusicoccin-stimulated H+-ATPase activity of plasma membranes sharply increased the germination frequency with respect to control values. The activation of pollen grains was accompanied by the Cl efflux. The blockage of Cl efflux with 1 mM ethacrynic acid significantly decreased the intracellular pH and fully inhibited germination. The results allow assumption that the intracellular pH rise and Cl efflux are prerequisites for pollen grain activation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号