首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   350篇
  免费   15篇
  2020年   3篇
  2017年   5篇
  2016年   7篇
  2015年   9篇
  2014年   11篇
  2013年   7篇
  2012年   13篇
  2011年   14篇
  2010年   8篇
  2009年   8篇
  2008年   17篇
  2007年   20篇
  2006年   11篇
  2005年   19篇
  2004年   26篇
  2003年   14篇
  2002年   25篇
  2001年   11篇
  2000年   13篇
  1999年   5篇
  1998年   12篇
  1997年   3篇
  1996年   6篇
  1995年   10篇
  1994年   8篇
  1992年   2篇
  1991年   5篇
  1990年   4篇
  1989年   3篇
  1988年   3篇
  1987年   5篇
  1985年   6篇
  1984年   4篇
  1983年   1篇
  1982年   7篇
  1981年   4篇
  1980年   6篇
  1979年   5篇
  1978年   3篇
  1977年   1篇
  1976年   3篇
  1975年   2篇
  1974年   2篇
  1972年   2篇
  1969年   1篇
  1968年   1篇
  1967年   1篇
  1964年   1篇
  1960年   1篇
  1959年   2篇
排序方式: 共有365条查询结果,搜索用时 203 毫秒
231.
In conifers, attacks by bark beetles and associated pathogenic fungi cause an induced wound response, which is characterized by accumulation of antifungal compounds and morphological changes that aid wound healing. In this article the stilbene and terpene concentrations of Norway spruce phloem were monitored as symptoms of induced wound responses in relation to changed nutrient conditions caused by fertilization. Plots of mature Norway spruce were fertilized with N, P or NPK. One year after fertilization the trees were artificially infected with Ceratocystis polonica, a pathogenic fungus associated with the bark beetle Ips typographus. The response of stilbenes to fungal inoculation was mainly qualitative. The concentration of stilbene glycosides in the phloem decreased, and in the immediate vicinity of the site of fungal inoculation, stilbene glycosides were less frequent than in mechanically wounded or unwounded phloem. Corresponding stilbene aglycones were most frequent inside the reaction lesion. The concentration of total stilbene aglycones near the inoculation site was significantly lower in N-fertilized trees than in unfertilized trees. Fungal inoculation caused a strong quantitative response in terpenes. The total terpene concentration of the phloem increased significantly, to almost 100 times greater near the inoculation site compared to the constitutive values. N fertilization significantly reduced the total terpene and total stilbene aglycone concentrations near the inoculation sites. Thus, N fertilization may reduce the ability of Norway spruce to defend itself against fungal pathogens.  相似文献   
232.
Phenolic compounds are commonly regarded as the main chemical defenses of deciduous woody plants against insects. To examine how indices of leaf maturation (water content, toughness, and sugar/protein ratio) modified larval consumption and growth relative to phenolics and phenolic-related leaf traits, we measured consumption and growth of fourth-instar Epirrita autumnata (Bkh.) (Lepidoptera: Geometridae) larvae on three different days on young, normal, and mature leaves, respectively, from the same mountain birch (Betula pubescens ssp. czerepanovii (Orlova) Hämet-Ahti) trees. The larvae achieved the same growth rates on young and normal leaves, but had to consume 40% more on the latter. On more mature leaves, larval growth was poorer and was positively correlated with sugar/protein ratios (although the ratio peaked at that time). Indices of leaf maturation correlated with several phenolics in data pooled over the three study days, but poorly in any individual day. Similarly, in the pooled data, larval consumption and growth correlated with several leaf traits, but correlations between leaf and insect traits were few on any of the three days, and no trait was significant on each of the three days.We next examined whether variation in the maturation indices modified the associations of phenolics with insect consumption and growth. When interactions between phenolics and leaf maturation indices were taken into account, the number of phenolic compounds displaying significant associations with insect traits more than doubled. The relative importance of interactive versus direct associations increased with leaf maturation: on young leaves five phenolics showed direct and eleven interactive associations with insect traits, while in mature leaves we found two phenolics to display direct and thirteen phenolics interactive associations. Leaf water content, either alone or together with toughness and sugar/protein ratio, generally explained more of the variance in Epirrita growth (up to 59%) than any phenolic or phenolic-related trait alone (highest value 20%). Including interactive effects between phenolics and indices of leaf maturation in the model increased the proportion explained of variance in larval growth between 49 and 73%. Maturation indices explained 0 to 23% of variance in consumption, and the phenolic compound with the highest (positive!) correlation alone up to 28%, but taking into account interactions between phenolics and maturation indices raised the degree of explanation much (namely, 32 to 53%) over that explained by indices of leaf maturation alone. This indicates strong interactive effects on consumption between phenolics and indices of leaf maturation.  相似文献   
233.
When resources are limited, parents should decide the optimal number, size, and sex of progeny, and offspring should decide the optimal allocation of resources to different costly functions, such as growth and immunity. We manipulated clutch sizes of Eurasian kestrels by one egg to estimate possible cumulative effects of incubation and chick rearing costs on parental body condition, feeding effort, and offspring viability. No obvious effects of clutch size manipulations on feeding effort were found while feeding effort was adjusted to the original clutch size. Enlarged and control nests suffered from higher nestling mortality than reduced nests, and chicks of the enlarged group were in poorer body condition than chicks of the reduced group. Controlling for body mass, male chicks exhibited lower cell-mediated immunity assessed by a cutaneous hypersensitivity response than females, but only in treatments suffering from food restrictions, as indicated by chick starvation. These novel results reveal inter-sexual differences in physiological strategies in early life, suggesting sex-related differences in susceptibility to disease and consequently in survival prospects of offspring.  相似文献   
234.
The RGD story: a personal account.   总被引:8,自引:0,他引:8  
  相似文献   
235.
Predation impacts by introduced predators are predicted to be most intense in island ecosystems, and also variable depending on environmental conditions, but large-scale experimental field testing is rare. In this study we examine the factors that determine the distribution and abundance of vole metapopulations preyed upon by feral American mink Mustela vison in the outer Finnish archipelago of the Baltic Sea. Specifically, we follow the dynamics of field voles Microtus agrestis and bank voles Clethrionomys glareolus on 40 small islands under variable rainfall as part of a large-scale mink removal experiment. For both vole species occupancy rates were negatively influenced by island isolation, as were extinction events for field voles. High summer rainfall in 1998 corresponded to large vole populations where mink were absent, populations that then crashed in 1999 and 2000 when below average rains fell during the summer breeding season. Where mink were present however, vole abundance remained more constant between years with no boom-bust apparent. We conclude that weather and predation may drive vole abundance whereas habitat patchiness and metapopulation processes more strongly drive vole distributions. There may also be potential for interaction between these factors: because feral mink prevent rapid vole population growth after good summer rains, and vole dispersal is influenced by population size, feral mink may be changing vole dispersal patterns to disrupt the natural metapopulation dynamic. Hence this indirect impact of mink could lead to gradual erosion of vole populations in the outer archipelago by reducing recolonisation processes.  相似文献   
236.
Small mammal populations often exhibit large-scale spatial synchrony, which is purportedly caused by stochastic weather-related environmental perturbations, predation or dispersal. To elucidate the relative synchronizing effects of environmental perturbations from those of dispersal movements of small mammalian prey or their predators, we investigated the spatial dynamics of Microtus vole populations in two differently structured landscapes which experience similar patterns of weather and climatic conditions. Vole and predator abundances were monitored for three years on 28 agricultural field sites arranged into two 120-km-long transect lines in western Finland. Sites on one transect were interconnected by continuous agricultural farmland (continuous landscape), while sites on the other were isolated from one another to a varying degree by mainly forests (fragmented landscape). Vole populations exhibited large-scale (>120 km) spatial synchrony in fluctuations, which did not differ in degree between the landscapes or decline with increasing distance between trapping sites. However, spatial variation in vole population growth rates was higher in the fragmented than in the continuous landscape. Although vole-eating predators were more numerous in the continuous agricultural landscape than in the fragmented, our results suggest that predators do not exert a great influence on the degree of spatial synchrony of vole population fluctuations, but they may contribute to bringing out-of-phase prey patches towards a regional density level. The spatial dynamics of vole populations were similar in both fragmented and continuous landscapes despite inter-landscape differences in both predator abundance and possibilities of vole dispersal. This implies that the primary source of synchronization lies in a common weather-related environment.  相似文献   
237.
Abstract Genetic variance‐covariance structures (G), describing genetic constraints on microevolutionary changes of populations, have a central role in the current theories of life‐history evolution. However, the evolution of Gs in natural environments has been poorly documented. Resource quality and quantity for many animals and plants vary seasonally, which may shape genetic architectures of their life histories. In the mountain birch‐insect herbivore community, leaf quality of birch for insect herbivores declines profoundly during both leaf growth and senescence, but remains stable during midsummer. Using six sawfly species specialized on the mountain birch foliage, we tested the ways in which the seasonal variation in foliage quality of birch is related to the genetic architectures of larval development time and body size. In the species consuming mature birch leaves of stable quality, that is, without diet‐imposed time constraints for development time, long development led to high body mass. This was revealed by the strongly positive phenotypic and genetic correlations between the traits. In the species consuming growing or senescing leaves, on the other hand, the rapidly deteriorating leaf quality prevented the larvae from gaining high body mass after long development. In these species, the phenotypic and genetic correlations between development time and final mass were negative or zero. In the early‐summer species with strong selection for rapid development, genetic variation in development time was low. These results show that the intuitively obvious positive genetic relationship between development time and final body mass is a probable outcome only when the constraints for long development are relaxed. Our study provides the first example of a modification in guild‐wide patterns in the genetic architectures brought about by seasonal variation in resource quality.  相似文献   
238.
Adaptive bias in sex allocation is traditionally proposed to be related to the condition of mothers as well as to the unequal fitness values of produced sexes. A positive relationship between mother condition and investment into male offspring is often predicted. This relationship was also recently found to depend on environmental conditions. We studied these causalities experimentally using a design where winter food supply was manipulated in eight outdoor-enclosed populations of field voles Microtus agrestis. At the beginning of the breeding season in spring, food-supplemented mothers seemed to be in a similar condition, measured as body mass, head width, body condition index and parasite load (blood parasite Trypanosoma), to non-supplemented mothers. Food supplements affected neither the litter size, the reproductive effort of mothers, nor the litter sex ratios at birth. However, food supplementation significantly increased the birth size of male offspring and improved their condition, as indicated by reduced parasite loads (intestinal Eimeria). Interestingly, mothers in good body condition produced larger male offspring only when environmental conditions were improved by food supplements. Although the adaptiveness of variation in mammalian sex ratios is still questionable, our study indicates that mothers in good condition bias their investment towards male offspring, but only when environmental conditions are favourable.  相似文献   
239.
A tumor-homing peptide, F3, selectively binds to endothelial cells in tumor blood vessels and to tumor cells. Here, we show that the cell surface molecule recognized by F3 is nucleolin. Nucleolin specifically bound to an F3 peptide affinity matrix from extracts of cultured breast carcinoma cells. Antibodies and cell surface biotin labeling revealed nucleolin at the surface of actively growing cells, and these cells bound and internalized fluorescein-conjugated F3 peptide, transporting it into the nucleus. In contrast, nucleolin was exclusively nuclear in serum-starved cells, and F3 did not bind to these cells. The binding and subsequent internalization of F3 were blocked by an antinucleolin antibody. Like the F3 peptide, intravenously injected antinucleolin antibodies selectively accumulated in tumor vessels and in angiogenic vessels of implanted "matrigel" plugs. These results show that cell surface nucleolin is a specific marker of angiogenic endothelial cells within the vasculature. It may be a useful target molecule for diagnostic tests and drug delivery applications.  相似文献   
240.
Haukioja E 《Oecologia》2003,136(2):161-168
Leaf maturation in mountain birch (Betula pubescens ssp. czerepanovii) is characterized by rapid shifts in the types of dominant phenolics: from carbon-economic flavonoids aglycons in flushing leaves, via hydrolysable tannins and flavonoid glycosides, to carbon-rich proanthocyanidins (condensed tannins) in mature foliage. This shift accords with the suggested trade-offs between carbon allocation to plant defense and growth, but may also relate to the simultaneous decline in nutritive leaf traits, such as water, proteins and sugars, which potentially limit insect growth. To elucidate how birch leaf quality translates into insect growth, I introduce a simple model that takes into account defensive compounds but also acknowledges insect demand for nutritive compounds. The effects of defensive compounds on insect growth depend strongly on background variation in nutritive leaf traits: compensatory feeding on low nutritive diets increases the intake of defensive compounds, and the availability of growth-limiting nutritive compounds may modify the effects of defenses. The ratio of consumption to larval growth (both in dry mass) increases very rapidly with leaf maturation: from 2.9 to 9.8 over 2 weeks in June-July, and to 15 by August. High concentrations in mature birch leaves of "quantitative" defenses, such as proanthocyanidins (15-20% of dry mass), presumably prevent further consumption. If the same compounds had also protected half-grown leaves (which supported the same larval growth with only one third of the dry matter consumption of older leaves), the same intake of proanthocyanidins would have demanded improbably high concentrations (close to 50%) in young leaves. The model thus suggests an adaptive explanation for the high levels of "quantitative" defenses, such as proanthocyanidins, in low-nutritive but not in high-nutritive leaves because of the behavioral responses of insect feeding to leaf nutritive levels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号