首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4245篇
  免费   436篇
  国内免费   2篇
  4683篇
  2023年   30篇
  2022年   79篇
  2021年   106篇
  2020年   81篇
  2019年   108篇
  2018年   95篇
  2017年   94篇
  2016年   155篇
  2015年   227篇
  2014年   222篇
  2013年   282篇
  2012年   404篇
  2011年   358篇
  2010年   219篇
  2009年   183篇
  2008年   257篇
  2007年   253篇
  2006年   193篇
  2005年   191篇
  2004年   187篇
  2003年   146篇
  2002年   139篇
  2001年   54篇
  2000年   26篇
  1999年   37篇
  1998年   38篇
  1997年   20篇
  1996年   20篇
  1995年   14篇
  1994年   24篇
  1993年   20篇
  1992年   30篇
  1991年   33篇
  1990年   21篇
  1989年   30篇
  1988年   25篇
  1987年   37篇
  1986年   31篇
  1985年   24篇
  1984年   20篇
  1983年   17篇
  1982年   8篇
  1981年   14篇
  1980年   17篇
  1979年   8篇
  1978年   11篇
  1974年   9篇
  1968年   8篇
  1967年   12篇
  1963年   12篇
排序方式: 共有4683条查询结果,搜索用时 15 毫秒
81.
82.

Background

Tamoxifen (TAM) is a well characterized breast cancer drug and selective estrogen receptor modulator (SERM) which also has been associated with a small increase in risk for uterine cancers. TAM's partial agonist activation of estrogen receptor has been characterized for specific gene promoters but not at the genomic level in vivo.Furthermore, reducing uncertainties associated with cross-species extrapolations of pharmaco- and toxicogenomic data remains a formidable challenge.

Results

A comparative ligand and species analysis approach was conducted to systematically assess the physiological, morphological and uterine gene expression alterations elicited across time by TAM and ethynylestradiol (EE) in immature ovariectomized Sprague-Dawley rats and C57BL/6 mice. Differential gene expression was evaluated using custom cDNA microarrays, and the data was compared to identify conserved and divergent responses. 902 genes were differentially regulated in all four studies, 398 of which exhibit identical temporal expression patterns.

Conclusion

Comparative analysis of EE and TAM differentially expressed gene lists suggest TAM regulates no unique uterine genes that are conserved in the rat and mouse. This demonstrates that the partial agonist activities of TAM extend to molecular targets in regulating only a subset of EE-responsive genes. Ligand-conserved, species-divergent expression of carbonic anhydrase 2 was observed in the microarray data and confirmed by real time PCR. The identification of comparable temporal phenotypic responses linked to related gene expression profiles demonstrates that systematic comparative genomic assessments can elucidate important conserved and divergent mechanisms in rodent estrogen signalling during uterine proliferation.  相似文献   
83.
Saturation of the cell's protein folding capacity and accumulation of inactive incompletely folded protein often accompanying the overexpression of membrane proteins (MPs) presents an obstacle to their efficient purification in a functional form for structural studies. We present a novel strategy for optimization of functional MP expression in Saccharomyces cerevisiae. This approach exploits the unfolded protein response (UPR) pathway, a stress signaling mechanism that senses the accumulation of unfolded proteins in the endoplasmic reticulum. We demonstrate that a high level of UPR induction upon expression of a MP reflects impaired functional expression of that protein. Tuning the expression level of the protein so as to avoid or minimize UPR induction results in its increased functional expression. UPR status can therefore serve as a proxy variable for the extent of impaired expression of a MP that may even be applicable in the absence of knowledge of the protein's biological function.  相似文献   
84.
85.
86.
The clinical translation of tissue engineering approaches is limited by the requirement of a cell source. Cell guidance is a new concept that provides an alternative approach, obviating a requirement for an external cell source. This relies on site-specific homing and differentiation of the patient??s own cells to an implanted scaffold through controlled delivery of cytokines. In this study, we used stromal-cell-derived factor 1-alpha (SDF-1??) in combination with bone morphogenic protein (BMP)-2 or transforming growth factor (TGF)-??1 to induce cell migration and osteogenic or chondrogenic differentiation, respectively, in implanted scaffolds in a rat model. A customized cytokine microdelivery apparatus was used to ensure the constant rate and concentration of cytokine delivery around the scaffold. The formation of osteoid or early cartilage was observed after 4?weeks in specimens treated with SDF-1?? and either BMP-2 or TGF-??1. The density of cellular infiltrate and formation of differentiated tissue were lower in scaffolds treated only with BMP-2 or TGF-??1. Thus, controlled SDF-1?? delivery induces cell migration into scaffolds and can result in enhanced osteogenesis and chondrogenesis when used in combination with differentiation cytokines for purposes of tissue engineering.  相似文献   
87.
88.
89.
The emergence of SARS-CoV-2 in late 2019 and human responses to the resulting COVID-19 pandemic in early 2020 have rapidly changed many aspects of human behavior, including our interactions with wildlife. In this commentary, we identify challenges and opportunities at human–primate interfaces in light of COVID-19, focusing on examples from Asia, and make recommendations for researchers working with wild primates to reduce zoonosis risk and leverage research opportunities. First, we briefly review the evidence for zoonotic origins of SARS-CoV-2 and discuss risks of zoonosis at the human–primate interface. We then identify challenges that the pandemic has caused for primates, including reduced nutrition, increased intraspecific competition, and increased poaching risk, as well as challenges facing primatologists, including lost research opportunities. Subsequently, we highlight opportunities arising from pandemic-related lockdowns and public health messaging, including opportunities to reduce the intensity of problematic human–primate interfaces, opportunities to reduce the risk of zoonosis between humans and primates, opportunities to reduce legal and illegal trade in primates, new opportunities for research on human–primate interfaces, and opportunities for community education. Finally, we recommend specific actions that primatologists should take to reduce contact and aggression between humans and primates, to reduce demand for primates as pets, to reduce risks of zoonosis in the context of field research, and to improve understanding of human–primate interfaces. Reducing the risk of zoonosis and promoting the well-being of humans and primates at our interfaces will require substantial changes from “business as usual.” We encourage primatologists to help lead the way.  相似文献   
90.
Anticipating future changes of an ecosystem's dynamics requires knowledge of how its key communities respond to current environmental regimes. The Great Barrier Reef (GBR) is under threat, with rapid changes of its reef‐building hard coral (HC) community structure already evident across broad spatial scales. While several underlying relationships between HC and multiple disturbances have been documented, responses of other benthic communities to disturbances are not well understood. Here we used statistical modelling to explore the effects of broad‐scale climate‐related disturbances on benthic communities to predict their structure under scenarios of increasing disturbance frequency. We parameterized a multivariate model using the composition of benthic communities estimated by 145,000 observations from the northern GBR between 2012 and 2017. During this time, surveyed reefs were variously impacted by two tropical cyclones and two heat stress events that resulted in extensive HC mortality. This unprecedented sequence of disturbances was used to estimate the effects of discrete versus interacting disturbances on the compositional structure of HC, soft corals (SC) and algae. Discrete disturbances increased the prevalence of algae relative to HC while the interaction between cyclones and heat stress was the main driver of the increase in SC relative to algae and HC. Predictions from disturbance scenarios included relative increases in algae versus SC that varied by the frequency and types of disturbance interactions. However, high uncertainty of compositional changes in the presence of several disturbances shows that responses of algae and SC to the decline in HC needs further research. Better understanding of the effects of multiple disturbances on benthic communities as a whole is essential for predicting the future status of coral reefs and managing them in the light of new environmental regimes. The approach we develop here opens new opportunities for reaching this goal.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号