首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3620篇
  免费   342篇
  国内免费   1篇
  2024年   4篇
  2023年   24篇
  2022年   65篇
  2021年   105篇
  2020年   76篇
  2019年   98篇
  2018年   94篇
  2017年   89篇
  2016年   144篇
  2015年   212篇
  2014年   209篇
  2013年   253篇
  2012年   378篇
  2011年   335篇
  2010年   201篇
  2009年   169篇
  2008年   235篇
  2007年   234篇
  2006年   176篇
  2005年   162篇
  2004年   165篇
  2003年   127篇
  2002年   105篇
  2001年   24篇
  2000年   11篇
  1999年   20篇
  1998年   11篇
  1997年   13篇
  1996年   6篇
  1995年   14篇
  1994年   9篇
  1993年   9篇
  1992年   12篇
  1991年   21篇
  1990年   8篇
  1989年   12篇
  1988年   16篇
  1987年   13篇
  1986年   13篇
  1985年   9篇
  1984年   8篇
  1982年   4篇
  1981年   4篇
  1980年   5篇
  1978年   4篇
  1976年   5篇
  1974年   6篇
  1972年   4篇
  1969年   8篇
  1960年   4篇
排序方式: 共有3963条查询结果,搜索用时 31 毫秒
81.
82.

Fluorescence spectroscopy is a common tool to assess optical dissolved organic matter (DOM) and a number of characteristics, including DOM biodegradability, have been inferred from these analyses. However, recent findings on soil and DOM dynamics emphasize the importance of ecosystem-scale factors, such as physical separation of substrate from soil microbial communities and soil physiochemical cycles driving DOM stability. We apply this principle to soil derived DOM and hypothesize that optical properties can only supply information on biodegradability when evaluated in the larger ecosystem because substrate composition and the activity/abundance of the microbial community ultimately drive DOM degradation. To evaluate biodegradability in this context, we assessed aqueous soil extracts for water extractable organic carbon (WEOC) content, biodegradability, microbial biomass and DOM characteristics using fluorescence spectroscopy across a range of environmental conditions (covariant with season and land use) in northern Vermont, USA. Our results indicate that changes in environmental conditions affect composition, quantity, and biodegradability of DOM. WEOC concentrations were highest in the fall and lowest in the summer, while no significant differences were found between land covers; however, DOM biodegradability was significantly higher in the agricultural site across seasons. Despite a shift in utilized substrate from less aromatic DOM in summer to more aromatic DOM in winter, biodegradability was similar for all seasons. The only exception was cold temperature incubations where microbial activity was depressed, and processing was slowed. These results provide examples on how fluorescence based metrics can be combined with context relevant environmental parameters to evaluate bioavailability in the context of the larger ecosystem.

  相似文献   
83.
Almost 40 years ago, Terry L. Erwin published a seemingly audacious proposition: There may be as many as 30 million species of insects in the world. Here, we translate Erwin's verbal argument into a diversity-ratio model—the Erwin Equation of Biodiversity—and discuss how it has inspired other biodiversity estimates. We categorize, describe the assumptions for, and summarize the most commonly used methods for calculating estimates of global biodiversity. Subsequent diversity-ratio extrapolations have incorporated parameters representing empirical insect specialization ratios, and how insect specialization changes at different spatial scales. Other approaches include macroecological diversity models and diversity curves. For many insect groups with poorly known taxonomies, diversity estimates are based on the opinions of taxonomic experts. We illustrate our current understanding of insect diversity by focusing on the six most speciose insect orders worldwide. For each order, we compiled estimates of the (a) maximum estimated number of species, (b) minimum estimated number of species, and (c) number of currently described species. By integrating these approaches and considering new information, we believe an estimate of 5.5 million species of insects in the world is much too low. New molecular methodologies (e.g., metabarcoding and NGS studies) are revealing daunting numbers of cryptic and previously undescribed species, at the same time increasing our precision but also uncertainty about present estimates. Not until technologies advance and sampling become more comprehensive, especially of tropical biotas, will we be able to make robust estimates of the total number of insect species on Earth.  相似文献   
84.

Background

A disintegrin and metalloproteinase-12 (ADAM12) is a member of the greater ADAM family of enzymes: these are multifunctional, generally membrane-bound, zinc proteases for which there are forty genes known (21 of these appearing in humans). ADAM12 has been implicated in the pathogenesis of various cancers, liver fibrogenesis, hypertension, and asthma, and its elevation or decrease in human serum has been linked to these and other physiological/pathological conditions.

Scope

In this review, we begin with a brief overview of the ADAM family of enzymes and protein structure. We then discuss the role of ADAM12 in the progression and/or diagnosis of various disease conditions, and we will conclude with an exploration of currently known natural and synthetic inhibitors.

Major conclusion

ADAM12 has potential to emerge as a successful drug target, although targeting the metalloproteinase domain with any specificity will be difficult to achieve due to structural similarity between the members of the ADAM and MMP family of enzymes. Overall, more research is required to establish ADAM12 being as a highly desirable biomarker and drug target of different diseases, and their selective inhibitors as potential therapeutic agents.

General significance

Given the appearance of elevated levels of ADAM12 in various diseases, particularly breast cancer, our understanding of this enzyme both as a biomarker and a potential drug target could help make significant inroads into both early diagnosis and treatment of disease.  相似文献   
85.
86.
87.
Many plant and animal immune receptors have a modular nucleotide-binding-leucine-rich repeat (NB-LRR) architecture in which a nucleotide-binding switch domain, NB-ARC, is tethered to a LRR sensor domain. The cooperation between the switch and sensor domains, which regulates the activation of these proteins, is poorly understood. Here, we report structural determinants governing the interaction between the NB-ARC and LRR in the highly homologous plant immune receptors Gpa2 and Rx1, which recognize the potato cyst nematode Globodera pallida and Potato virus X, respectively. Systematic shuffling of polymorphic sites between Gpa2 and Rx1 showed that a minimal region in the ARC2 and N-terminal repeats of the LRR domain coordinate the activation state of the protein. We identified two closely spaced amino acid residues in this region of the ARC2 (positions 401 and 403) that distinguish between autoactivation and effector-triggered activation. Furthermore, a highly acidic loop region in the ARC2 domain and basic patches in the N-terminal end of the LRR domain were demonstrated to be required for the physical interaction between the ARC2 and LRR. The NB-ARC and LRR domains dissociate upon effector-dependent activation, and the complementary-charged regions are predicted to mediate a fast reassociation, enabling multiple rounds of activation. Finally, we present a mechanistic model showing how the ARC2, NB, and N-terminal half of the LRR form a clamp, which regulates the dissociation and reassociation of the switch and sensor domains in NB-LRR proteins.Resistance (R) proteins play a central role in the recognition-based immune system of plants. Unlike vertebrates, plants lack an adaptive immune system with highly specialized immune cells. Instead, they rely on an innate immune system in which each cell is autonomous. Two types of immune receptors can be distinguished in plants, pathogen-associated molecular patterns recognition receptors that detect conserved molecular patterns in plant pathogens and intracellular R proteins that recognize specific effectors employed by pathogens as modifiers of host metabolism or defense mechanisms (Jones and Dangl, 2006). Effector-triggered activation of R proteins leads to an array of protective responses, often culminating in programmed cell death at the site of infection (Greenberg and Yao, 2004), thereby preventing further ingress of the pathogen. Pathogens have evolved mechanisms to evade recognition by R proteins and to regain their virulence (Dodds and Rathjen, 2010). This continuous coevolutionary process between host and pathogen has resulted in a reservoir of highly diverse R proteins in plants, enabling them to counteract a wide range of pathogens and pests.The most common class of R proteins consists of nucleotide-binding (NB)-leucine-rich repeat (LRR) proteins with a tripartite domain architecture, which roughly corresponds to an N-terminal response domain (a coiled coil [CC] or Toll/Interleukin-1 receptor [TIR] domain) involved in downstream signaling, a central molecular switch domain (the NB domain present in the mammalian apoptosis regulator Apaf1, plant R proteins, and the Caenorhabditis elegans apoptosis regulator CED4 [NB-ARC]), and a C-terminal sensor domain (the LRR domain). The NB-ARC domain is an extended nucleotide-binding domain that plant immune receptors share with metazoan apoptosis regulators and immune receptors such as Apaf1, CED4, and nucleotide-binding oligomerization domain (NOD-like) receptors (NLRs) and belongs to the STAND (signal transduction ATPases with numerous domains) family of nucleoside triphosphatase domains (van der Biezen and Jones, 1998; Leipe et al., 2004; Albrecht and Takken, 2006; Maekawa et al., 2011b). The overall modular architecture of metazoan STAND nucleoside triphosphatase is similar to that of NB-LRR plant immune receptors, but the domains flanking the NB-ARC domain often differ. In NLRs, for example, several N-terminal domains can be found, including caspase-recruiting domains and Pyrin domains (Proell et al., 2008). In the mammalian protein Apaf1, the sensor involved in cytochrome c detection consists of C-terminal WD40 repeats (Zou et al., 1997).In plant NB-LRR resistance proteins, the recognition of a pathogen effector via the LRR domain is thought to switch the conformation of the protein from a closed, autoinhibited “off” state into an open, active “on” state (Lukasik and Takken, 2009). The activation of NB-LRR proteins is most likely a multistep process in which the NB-ARC domain plays a central role. The three subdomains of the NB-ARC, the NB, ARC1, and ARC2, collectively form a nucleotide-binding pocket that adopts different conformations depending on the bound nucleotide. This mechanism seems to be conserved between proteins from organisms as distant as bacteria, metazoans, and plants (Rairdan and Moffett, 2007; Danot et al., 2009; Takken and Tameling, 2009). The conformational change coincides with the exchange of bound ADP for ATP in the NB-ARC, probably stabilizing the active conformation (Tameling et al., 2006; Ade et al., 2007). Hydrolysis of the bound ATP is hypothesized to return the domains to their inactive state. The exact mechanism by which elicitor recognition via the LRR leads to a conformational change of the NB-ARC and the subsequent activation of immune signaling pathways is not clear.Previous studies have shown that the CC/TIR, NB-ARC, and LRR domains in plant immune receptors interact and cooperate with each other in an interdependent manner (Moffett et al., 2002; Leister et al., 2005; Ade et al., 2007; Rairdan et al., 2008). From these data, a picture emerges in which the LRR domain is not only involved in pathogen recognition, but also plays a role in maintaining an autoinhibited resting state in the absence of pathogens via its interactions with the other domains (Bendahmane et al., 2002; Hwang and Williamson, 2003; Ade et al., 2007; Qi et al., 2012). A similar role as regulatory domain has been found for the sensor domains of other NLRs, such as the mammalian Apaf1 (Hu et al., 1998). For the potato (Solanum tuberosum) immune receptor Rx1, a model plant NB-LRR protein, it has been shown that the LRR cooperates with the ARC subdomains in retaining the inactive state of the protein. The deletion of the ARC and LRR domains leads to a constitutive activity of the NB (Bendahmane et al., 2002; Rairdan et al., 2008). In addition, it was demonstrated that the elicitor, the Potato virus X (PVX) coat protein, modifies the interdomain interactions in Rx1 (Moffett et al., 2002; Rairdan et al., 2008). Sequence exchanges between Rx1 and the highly homologous nematode resistance protein Gpa2 (88% amino acid identity) resulted in incompatibilities between the domains that give rise to inappropriate activation of cell death responses (Rairdan and Moffett, 2006), indicating that the cooperation between the sensor and switch domains depends on an interaction fine tuned by intramolecular coevolution. In this light, it is interesting to note that a functional ortholog of Rx1, Rx2 from Solanum acaule, is almost identical to Rx1 in its LRR region but displays a higher similarity to Gpa2 in stretches of its CC-NB-ARC sequence (Bendahmane et al., 2000).The aim of our study was to pinpoint the molecular determinants controlling the switch between the resting and activation state of NB-LRR proteins. The incompatibility between the ARC and LRR domains of Rx1 and Gpa2 was used as a guideline to dissect the molecular and structural determinants involved in the cooperation between the switch (NB-ARC) and sensor (LRR) domain. An extensive exchange of polymorphic residues between these two homologous NB-LRR proteins resulted in the identification of a minimal fragment of 68 amino acid residues in the ARC2 domain and the first LRR repeats as being crucial for proper activation of Gpa2 and Rx1. Within this minimal region, we identified two amino acids that, despite their proximity in the amino acid sequence, differentiate between elicitor-dependent (position 401) and independent activation (position 403). However, structural modeling of the domains shows that the residue at position 403 operates at the interface of the ARC2 and N-terminal part of the LRR domain, while residue 401 mapped at the interface between the ARC2 and NB domain. Furthermore, an acidic loop region in the ARC2 domain and complementary-charged basic patches in the N-terminal half of the LRR domain are shown to be required for the physical interaction between these domains. We demonstrate that the binding between the CC- NB-ARC and LRR domains is disrupted upon elicitor-dependent activation and that the complementary-charged residues are predicted to facilitate reassociation. Two independent docking simulations of the NB-ARC and LRR domain indicate that the LRR domain binds to the NB-ARC domain at the surface formed by the interaction of the ARC2 and NB subdomains. We present a mechanistic model in which the first repeats of the LRR, the ARC2 subdomain, and the NB form a clamp, which governs the shuttling between a closed, autoinhibited “off” state and an open, active “on” state of the resistance protein. Finally, we discuss the consequences of the functional constraints imposed by the interface of the NB, ARC2, and LRR domain for the generation of novel resistance specificities via evolutionary processes and genetic engineering.  相似文献   
88.
89.
Cholesteryl ester transfer protein (CETP) transfers cholesteryl ester and triglyceride between HDL and apoB-containing lipoproteins. Anacetrapib (ANA), a reversible inhibitor of CETP, raises HDL cholesterol and lowers LDL cholesterol in dyslipidemic patients. We previously demonstrated that ANA increases macrophage-to-feces reverse cholesterol transport and fecal cholesterol excretion in hamsters, and increased preβ HDL-dependent cholesterol efflux via ABCA1 in vitro. However, the effects of ANA on in vivo preβ HDL have not been characterized. In vitro, ANA inhibited the formation of preβ, however in ANA-treated dyslipidemic hamsters, preβ HDL levels (measured by two-dimensional gel electrophoresis) were increased, in contrast to in vitro findings. Because changes in plasma preβ HDL have been proposed to potentially affect markers of cholesterol absorption with other CETP inhibitors, a dual stable isotope method was used to directly measure cholesterol absorption in hamsters. ANA treatment of hamsters (on either dyslipidemic or normal diet) had no effect on cholesterol absorption, while dalcetrapib-treated hamsters displayed an increase in cholesterol absorption. Taken together, these data support the notion that ANA promotes preβ HDL functionality in vivo, with no effects on cholesterol absorption.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号