首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2776篇
  免费   180篇
  2023年   12篇
  2022年   34篇
  2021年   69篇
  2020年   60篇
  2019年   58篇
  2018年   48篇
  2017年   55篇
  2016年   93篇
  2015年   137篇
  2014年   166篇
  2013年   204篇
  2012年   266篇
  2011年   253篇
  2010年   147篇
  2009年   111篇
  2008年   199篇
  2007年   157篇
  2006年   144篇
  2005年   139篇
  2004年   116篇
  2003年   101篇
  2002年   79篇
  2001年   17篇
  2000年   15篇
  1999年   21篇
  1998年   23篇
  1997年   15篇
  1996年   8篇
  1995年   14篇
  1994年   11篇
  1993年   9篇
  1992年   4篇
  1991年   8篇
  1990年   6篇
  1989年   5篇
  1988年   10篇
  1985年   7篇
  1984年   6篇
  1982年   8篇
  1981年   5篇
  1978年   6篇
  1976年   6篇
  1975年   6篇
  1973年   6篇
  1972年   4篇
  1968年   11篇
  1966年   5篇
  1964年   5篇
  1962年   5篇
  1957年   5篇
排序方式: 共有2956条查询结果,搜索用时 15 毫秒
101.
The human serotonin transporter (hSERT) terminates neurotransmission by removing serotonin (5HT) from the synaptic cleft, an essential process for proper functioning of serotonergic neurons. Structures of the hSERT have revealed its molecular architecture in four conformations, including the outward-open and occluded states, and show the transporter’s engagement with co-transported ions and the binding mode of inhibitors. In this study, we investigated the molecular mechanism by which the hSERT occludes and sequesters the substrate 5HT. This first step of substrate uptake into cells is a structural change consisting of the transition from the outward-open to the occluded state. Inhibitors such as the antidepressants citalopram, fluoxetine, and sertraline inhibit this step of the transport cycle. Using molecular dynamics simulations, we reached a fully occluded state, in which the transporter-bound 5HT becomes fully shielded from both sides of the membrane by two closed hydrophobic gates. Analysis of 5HT-triggered occlusion showed that bound 5HT serves as an essential trigger for transporter occlusion. Moreover, simulations revealed a complex sequence of steps and showed that movements of bundle domain helices are only partially correlated. 5HT-triggered occlusion is initially dominated by movements of transmembrane helix 1b, while in the final step, only transmembrane helix 6a moves and relaxes an intermediate change in its secondary structure.  相似文献   
102.
The molecular evolution processes underlying the acquisition of the placenta in eutherian ancestors are not fully understood. Mouse NCK-interacting kinase (NIK)-related kinase (NRK) is expressed highly in the placenta and plays a role in preventing placental hyperplasia. Here, we show the molecular evolution of NRK, which confers its function for inhibiting placental cell proliferation. Comparative genome analysis identified NRK orthologs across vertebrates, which share the kinase and citron homology (CNH) domains. Evolutionary analysis revealed that NRK underwent extensive amino acid substitutions in the ancestor of placental mammals and has been since conserved. Biochemical analysis of mouse NRK revealed that the CNH domain binds to phospholipids, and a region in NRK binds to and inhibits casein kinase-2 (CK2), which we named the CK2-inhibitory region (CIR). Cell culture experiments suggest the following: 1) Mouse NRK is localized at the plasma membrane via the CNH domain, where the CIR inhibits CK2. 2) This mitigates CK2-dependent phosphorylation and inhibition of PTEN and 3) leads to the inhibition of AKT signaling and cell proliferation. Nrk deficiency increased phosphorylation levels of PTEN and AKT in mouse placenta, supporting our hypothesis. Unlike mouse NRK, chicken NRK did not bind to phospholipids and CK2, decrease phosphorylation of AKT, or inhibit cell proliferation. Both the CNH domain and CIR have evolved under purifying selection in placental mammals. Taken together, our study suggests that placental mammals acquired the phospholipid-binding CNH domain and CIR in NRK for regulating the CK2–PTEN–AKT pathway and placental cell proliferation.  相似文献   
103.
Background: Primary Sjögren’s syndrome (pSS) is a systemic autoimmune disease, which affects exocrine glands. T cell activation is a trigger mechanism in the immune response. Hyperreactivity of T cells and antibody production are features in pSS. ICOS can be critical in the pathogenesis of pSS. Methods: A total of 134 pSS patients and 134 control subjects (CS) were included. Genotyping was performed by PCR-RFLP. ICOS mRNA expression was quantified by real-time PCR, and CD4+ ICOS+ T cells were determined by flow cytometry. Results: The ICOS IVS1 + 173 T>C polymorphisms were not associated with susceptibility to pSS (p = 0.393, CI = 0.503–1.311). However, the c.1624 C>T polymorphism was associated with a reduction in the risk of development of pSS (p = 0.015, CI = 0.294–0.884). An increase in ICOS mRNA expression in patients was observed (3.7-fold). Furthermore, pSS patients showed an increase in membranal-ICOS expression (mICOS). High expression of mICOS (MFI) was associated with lymphocytic infiltration. Conclusions: The IVS1 + 173 polymorphism is not a genetic marker for the development of pSS, while c.1624 T allele was associated with a low risk. However, elevated mICOS expression in pSS patients with high lymphocytic infiltration was found. ICOS may have an important role in the immunopathogenesis of pSS and should be analyzed in T cell subsets in pSS patients as a possible disease marker.  相似文献   
104.
Some ultrastructural characteristics of cell types in barley root tip and root cap were recorded and compared with the aim to identify these cells by electron microscopy, even if positional information is limited in the ultrathin section. Root cap and root body initials could be distinguished according to the type of proplastids. Cap and apical cells also differed at the level of dictyosomes and the relative quantity of the dense substance in the enlarging vacuoles. The maturity of cap cells could be judged from the degree of vacuolization and the size of starch grains (statoliths) in the plastids.  相似文献   
105.
The large scale production of recombinant collagen for use in biomaterials requires an efficient expression system capable of processing a large (>400Kd) multisubunit protein requiring post-translational modifications. To investigate whether the mammary gland of transgenic animals fulfills these requirements, transgenic mice were generated containing the S1-casein mammary gland-specific promoter operatively linked to 37Kb of the human 1(I) procollagen structural gene and 3 flanking region. The frequency of transgenic lines established was 12%. High levels of soluble triple helical homotrimeric [(1)3] type I procollagen were detected (up to 8mg/ml) exclusively in the milk of six out of 9 lines of lactating transgenic mice. The transgene-derived human procollagen chains underwent efficient assembly into a triple helical structure. Although proline or lysine hydroxylation has never been described for any milk protein, procollagen was detected with these post-translational modifications. The procollagen was stable in mil; minimal degradation was observed. These results show that the mammary gland is capable of expressing a large procollagen gene construct, efficiently assembling the individual polypeptide chains into a stable triple helix, and secreting the intact molecule into the milk.  相似文献   
106.
Mammalian artificial chromosomes (MACs) provide a means to introduce large payloads of genetic information into the cell in an autonomously replicating, non-integrating format. Unique among MACs, the mammalian satellite DNA-based Artificial Chromosome Expression (ACE) can be reproducibly generated de novo in cell lines of different species and readily purified from the host cells' chromosomes. Purified mammalian ACEs can then be re-introduced into a variety of recipient cell lines where they have been stably maintained for extended periods in the absence of selective pressure. In order to extend the utility of ACEs, we have established the ACE System, a versatile and flexible platform for the reliable engineering of ACEs. The ACE System includes a Platform ACE, containing >50 recombination acceptor sites, that can carry single or multiple copies of genes of interest using specially designed targeting vectors (ATV) and a site-specific integrase (ACE Integrase). Using this approach, specific loading of one or two gene targets has been achieved in LMTK and CHO cells. The use of the ACE System for biological engineering of eukaryotic cells, including mammalian cells, with applications in biopharmaceutical production, transgenesis and gene-based cell therapy is discussed.  相似文献   
107.
Understanding the structural origins of differences in reduction potentials is crucial to understanding how various electron transfer proteins modulate their reduction potentials and how they evolve for diverse functional roles. Here, the high-resolution structures of several Clostridium pasteurianum rubredoxin (Cp Rd) variants with changes in the vicinity of the redox site are reported in order to increase this understanding. Our crystal structures of [V44L] (at 1.8 A resolution), [V44A] (1.6 A), [V44G] (2.0 A) and [V44A, G45P] (1.5 A) Rd (all in their oxidized states) show that there is a gradual decrease in the distance between Fe and the amide nitrogen of residue 44 upon reduction in the size of the side chain of residue 44; the decrease occurs from leucine to valine, alanine or glycine and is accompanied by a gradual increase in their reduction potentials. Mutation of Cp Rd at position 44 also changes the hydrogen-bond distance between the amide nitrogen of residue 44 and the sulfur of cysteine 42 in a size-dependent manner. Our results suggest that residue 44 is an important determinant of Rd reduction potential in a manner dictated by side-chain size. Along with the electric dipole moment of the 43-44 peptide bond and the 44-42 NH--S type hydrogen bond, a modulation mechanism for solvent accessibility through residue 41 might regulate the redox reaction of the Rds.  相似文献   
108.
109.
We hypothesized that transient high-glucose concentration interferes with mediation by nitric oxide (NO) of flow-induced dilation (FID) of arterioles due to enhanced production of superoxide. In isolated, pressurized (80 mmHg) rat gracilis muscle arterioles ( approximately 130 microm) after transient high-glucose treatment (tHG; incubation with 30 mM glucose for 1 h), FID was reduced (maximum: control, 38 +/- 4%; after tHG, 17 +/- 3%), which was not further diminished by the NO synthase (NOS) inhibitor N(omega)-nitro-l-arginine methyl ester (l-NAME; 18 +/- 2%). Correspondingly, an enhanced polyethylene-glycol-SOD (PEG-SOD)-sensitive superoxide production was detected after tHG in carotid arteries by dihydroethydine (DHE) staining. Presence of PEG-SOD during tHG prevented the reduction of FID (41 +/- 3%), which could be inhibited by l-NAME (20 +/- 4%). Administration of PEG-SOD after tHG did not prevent the reduction of FID (22 +/- 3%). Sepiapterin, a precursor of the NO synthase cofactor tetrahydrobiopterin (BH(4)), administered during tHG did not prevent the reduction of FID (maximum, 15 +/- 5%); however, it restored FID when administered after tHG (32 +/- 4%). Furthermore, inhibition of either glycolysis by 2-deoxyglucose or mitochondrial complex II by 2-thenoyltrifluoroacetone reduced the tHG-induced DHE-detectable enhanced superoxide production in carotid arteries and prevented FID reduction in arterioles (39 +/- 5 and 35 +/- 2%). Collectively, these findings suggest that in skeletal muscle arterioles, a transient elevation of glucose via its increased metabolism, elicits enhanced production of superoxide, which decreases the bioavailability of NO and the level of the NOS cofactor BH(4), resulting in a reduction of FID mediated by NO.  相似文献   
110.
The fecal and mucosal microbiota of infants with rectal bleeding and the fecal microbiota of healthy age-matched controls were investigated by fluorescent in situ hybridization. Bifidobacteria were the main genus in both the feces and mucosa. The other genera tested, Bacteroides, Clostridium, Escherichia coli and lactobacilli/enterococci, represented only minor constituents. No differences in fecal microbiota were observed between patients and controls. In the patients, however, four times greater numbers of bifidobacteria were observed in the feces when compared to the mucosa. Notwithstanding this difference, a strong positive correlation prevailed for bifidobacteria in feces and mucosal samples. The genera assessed accounted for 16% of total bacterial counts on mucosal samples and for 47% of total bacterial counts in feces. This indicates that the unidentified part of the microbiota, especially on the mucosa, deserves more attention.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号