首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7178篇
  免费   641篇
  国内免费   2篇
  2023年   42篇
  2022年   83篇
  2021年   151篇
  2020年   94篇
  2019年   116篇
  2018年   144篇
  2017年   156篇
  2016年   243篇
  2015年   371篇
  2014年   420篇
  2013年   528篇
  2012年   534篇
  2011年   517篇
  2010年   325篇
  2009年   297篇
  2008年   432篇
  2007年   432篇
  2006年   388篇
  2005年   353篇
  2004年   366篇
  2003年   329篇
  2002年   318篇
  2001年   68篇
  2000年   53篇
  1999年   76篇
  1998年   83篇
  1997年   62篇
  1996年   69篇
  1995年   54篇
  1994年   37篇
  1993年   49篇
  1992年   45篇
  1991年   34篇
  1990年   31篇
  1989年   31篇
  1988年   25篇
  1987年   25篇
  1986年   20篇
  1985年   30篇
  1984年   34篇
  1983年   33篇
  1982年   32篇
  1981年   28篇
  1980年   17篇
  1979年   14篇
  1978年   27篇
  1977年   18篇
  1976年   18篇
  1974年   15篇
  1973年   14篇
排序方式: 共有7821条查询结果,搜索用时 31 毫秒
161.
Neuronal polarization is facilitated by the formation of axons with parallel arrays of plus-end-out and dendrites with the nonuniform orientation of microtubules. In C. elegans, the posterior lateral microtubule (PLM) neuron is bipolar with its two processes growing along the anterior–posterior axis under the guidance of Wnt signaling. Here we found that loss of the Kinesin-13 family microtubule-depolymerizing enzyme KLP-7 led to the ectopic extension of axon-like processes from the PLM cell body. Live imaging of the microtubules and axonal transport revealed mixed polarity of the microtubules in the short posterior process, which is dependent on both KLP-7 and the minus-end binding protein PTRN-1. KLP-7 is positively regulated in the posterior process by planar cell polarity components of Wnt involving rho-1/rock to induce mixed polarity of microtubules, whereas it is negatively regulated in the anterior process by the unc-73/ced-10 cascade to establish a uniform microtubule polarity. Our work elucidates how evolutionarily conserved Wnt signaling establishes the microtubule polarity in neurons through Kinesin-13.  相似文献   
162.
163.
164.
We analyzed the global genetic variation pattern of Capsella bursa‐pastoris (Brassicaceae) as expressed in allozymic (within‐locus) diversity and isozymic (between‐locus) diversity. Results are based on a global sampling of more than 20,000 C. bursa‐pastoris individuals randomly taken from 1,469 natural provenances in the native and introduced range, covering a broad spectrum of the species’ geographic distribution. We evaluated data for population genetic parameters and F‐statistics, and Mantel tests and AMOVA were performed. Geographical distribution patterns of alleles and multilocus genotypes are shown in maps and tables. Genetic diversity of introduced populations is only moderately reduced in comparison with native populations. Global population structure was analyzed with structure, and the obtained cluster affiliation was tested independently with classification approaches and macroclimatic data using species distribution modeling. Analyses revealed two main clusters: one distributed predominantly in warm arid to semiarid climate regions and the other predominantly in more temperate humid to semihumid climate regions. We observed admixture between the two lineages predominantly in regions with intermediate humidity in both the native and non‐native ranges. The genetically derived clusters are strongly supported in macroclimatic data space. The worldwide distribution patterns of genetic variation in the range of C. bursa‐pastoris can be explained by intensive intra‐ and intercontinental migration, but environmental filtering due to climate preadaption seems also involved. Multiple independent introductions of genotypes from different source regions are obvious. “Endemic” genotypes might be the outcome of admixture or of de novo mutation. We conclude that today's successfully established Capsella genotypes were preadapted and found matching niche conditions in the colonized range parts.  相似文献   
165.
166.
167.
Chloroplasts of land plants characteristically contain grana, cylindrical stacks of thylakoid membranes. A granum consists of a core of appressed membranes, two stroma-exposed end membranes, and margins, which connect pairs of grana membranes at their lumenal sides. Multiple forces contribute to grana stacking, but it is not known how the extreme curvature at margins is generated and maintained. We report the identification of the CURVATURE THYLAKOID1 (CURT1) protein family, conserved in plants and cyanobacteria. The four Arabidopsis thaliana CURT1 proteins (CURT1A, B, C, and D) oligomerize and are highly enriched at grana margins. Grana architecture is correlated with the CURT1 protein level, ranging from flat lobe-like thylakoids with considerably fewer grana margins in plants without CURT1 proteins to an increased number of membrane layers (and margins) in grana at the expense of grana diameter in overexpressors of CURT1A. The endogenous CURT1 protein in the cyanobacterium Synechocystis sp PCC6803 can be partially replaced by its Arabidopsis counterpart, indicating that the function of CURT1 proteins is evolutionary conserved. In vitro, Arabidopsis CURT1A proteins oligomerize and induce tubulation of liposomes, implying that CURT1 proteins suffice to induce membrane curvature. We therefore propose that CURT1 proteins modify thylakoid architecture by inducing membrane curvature at grana margins.  相似文献   
168.

The ichnogenus Tonganoxichnus, produced by one or more monuran insect taxa, is now recorded from the Middle Pennsylvanian Mansfield Formation of Indiana. Tonganoxichnus is a resting trace that has three important implications. First, it represents a recurrent behavioral pattern in Upper Carboniferous to Lower Permian marginal marine environments of North America. Second, it provides finely resolved anatomical information for axial and appendicular body structures and behaviors that are difficult to determine from body‐fossil material alone. Third, integrated sedimentologic and ichnologic observations indicate that the Tonganoxichnus assemblage, inclusive of other ichnotaxa, is common in tidal rhythmites that were developed under freshwater conditions, probably in the innermost part of estuarine systems, close to or at the fluvioestuarine transition.  相似文献   
169.
Although phosphatidylinositol 5‐phosphate (PtdIns5P) is present in many cell types and its biogenesis is increased by diverse stimuli, its precise cellular function remains elusive. Here we show that PtdIns5P levels increase when cells are stimulated to move and we find PtdIns5P to promote cell migration in tissue culture and in a Drosophila in vivo model. First, class III phosphatidylinositol 3‐kinase, which produces PtdIns3P, was shown to be involved in migration of fibroblasts. In a cell migration screen for proteins containing PtdIns3P‐binding motifs, we identified the phosphoinositide 5‐kinase PIKfyve and the phosphoinositide 3‐phosphatase MTMR3, which together constitute a phosphoinositide loop that produces PtdIns5P via PtdIns(3,5)P2. The ability of PtdIns5P to stimulate cell migration was demonstrated directly with exogenous PtdIns5P and a PtdIns5P‐producing bacterial enzyme. Thus, the identified phosphoinositide loop defines a new role for PtdIns5P in cell migration.  相似文献   
170.

Introduction

Osteoarthritis (OA) is a degenerative joint disease affecting a large population of people. The mechanism of this highly prevalent disease is not fully understood. Currently there is no effective disease-modifying treatment for OA. The purpose of this study was two-fold: 1) to investigate the role of MMP13 in the development of OA; and 2) to evaluate the efficacy of the MMP13 inhibitor CL82198 as a pharmacologic treatment for preventing OA progression.

Methods

To investigate the role of the endogenous Mmp13 gene in OA development, tamoxifen was administered to two-week-old Col2CreER;Mmp13fx/fx (Mmp13Col2ER) and Cre-negative control mice for five days. OA was induced by meniscal-ligamentous injury (MLI) when the mice were 10 weeks old and MLI or sham-operated joints were harvested 4, 8, 12, or 16 weeks after surgery. To evaluate the efficacy of CL82198, MLI surgery was performed on 10-week-old wild type mice. CL82198 or saline was administered to the mice daily beginning immediately after the surgery for up to 16 weeks. The joint tissues collected from both experiments were evaluated by cartilage grading, histology/histomorphometry, immunohistochemistry (IHC), and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. The ability of CL82198 to inhibit MMP13 activity in vitro was confirmed by ELISA.

Results

The OA progression was decelerated in Mmp13Col2ER mice 8, 12, and 16 weeks post-surgery. Cartilage grading by blinded observers confirmed decreased articular cartilage degeneration in Mmp13Col2ER mice at 8, 12 and 16 weeks compared to Cre-negative mice. Histomorphometric analysis demonstrated that Mmp13Col2ER mice had a higher articular cartilage area and thickness at 12 and 16 weeks post-surgery compared to the control mice. Results of IHC revealed greater type II collagen and proteoglycan expression in Mmp13Col2ER mice. Chondrocyte apoptosis, as determined by TUNEL staining, was higher in control mice compared to Mmp13Col2ER mice. CL82198 inhibited MMP13 activity in conditioned media from vehicle (> 85%) or bone morphogenetic protein 2 (BMP2)-treated (> 90%) primary murine sternal chondrocytes. Intraperitoneal injection of CL82198 decelerated MLI-induced OA progression, increased type II collagen and proteoglycan levels, and inhibited chondrocyte apoptosis compared to saline treatment as determined by OA grading, histology, histomorphometry, IHC, and TUNEL staining, respectively.

Conclusions

Mmp13 is critical for OA progression and pharmacologic inhibition of MMP13 is an effective strategy to decelerate articular cartilage loss in a murine model of injury-induced knee OA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号