首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10502篇
  免费   1113篇
  国内免费   2篇
  2023年   54篇
  2022年   98篇
  2021年   195篇
  2020年   119篇
  2019年   150篇
  2018年   176篇
  2017年   199篇
  2016年   294篇
  2015年   483篇
  2014年   534篇
  2013年   677篇
  2012年   713篇
  2011年   673篇
  2010年   439篇
  2009年   406篇
  2008年   567篇
  2007年   541篇
  2006年   500篇
  2005年   470篇
  2004年   484篇
  2003年   422篇
  2002年   426篇
  2001年   169篇
  2000年   157篇
  1999年   157篇
  1998年   132篇
  1997年   104篇
  1996年   110篇
  1995年   94篇
  1994年   75篇
  1993年   97篇
  1992年   120篇
  1991年   109篇
  1990年   98篇
  1989年   104篇
  1988年   99篇
  1987年   96篇
  1986年   68篇
  1985年   90篇
  1984年   101篇
  1983年   73篇
  1982年   69篇
  1981年   63篇
  1980年   52篇
  1979年   63篇
  1978年   59篇
  1977年   57篇
  1976年   63篇
  1975年   48篇
  1974年   52篇
排序方式: 共有10000条查询结果,搜索用时 19 毫秒
11.
By using newly hatched (approximately 2 weeks old) brown trout(Salmo trutta) from six families of wild and six families ofsea-ranched origin (seventh generation), we tested the hypothesesthat (1) the hatchery environment selects for increased boldness,and (2) boldness predicts dominance status. Sea-ranched troutspend their first 2 years in the hatchery before being releasedinto the wild at the onset of seaward migration. Trout werepresented with a novel object (tack) and with food (brine shrimp),and their responses were measured and scored in terms of boldness.Siblings with increasing difference in boldness were then pairedin dyadic contests. Fish of sea-ranged origin were on averagebolder than were fish of wild origin, and bolder individualswere more likely to become dominant regardless of origin. Boldnesswas not related to RNA levels, indicating that bold behaviorwas not a consequence of higher metabolism or growth rate. Neitherwas size a predictor of bold behavior or the outcome of dyadiccontests. These results are consistent with studies on olderlife stages showing increased boldness toward predators in hatchery-selectedfish, which suggests that behavioral consequences of hatcheryselection are manifested very early in life. The concordancebetween boldness and dominance may suggest that these behaviorsare linked in a risk prone-aggressive phenotype, which may bepromoted by hatchery selection. However, we also found significantvariation in behavioral and growth-related traits among families,suggesting that heritable variation has not been exhausted bysea-ranching procedures.  相似文献   
12.
13.
M D Wang  L Buckley    C M Berg 《Journal of bacteriology》1987,169(12):5610-5614
To facilitate molecular analyses of a previously uncharacterized gene involved in alanine synthesis, attempts were made to clone the wild-type allele of this gene, alaA, with a mini-Mu plasmid element used for in vivo cloning. Seventy-six independent Ala+ plasmids were isolated and characterized. Physiological, enzymological, and restriction endonuclease analyses indicated that three different genes, none of them alaA, were cloned. These genes were avtA+, which encodes the alanine-valine transaminase (transaminase C); tyrB+, which encodes the tyrosine-repressible transaminase (transaminase D); and a previously undescribed gene, called alaB, which encodes an alanine-glutamate transaminase.  相似文献   
14.
15.
There has been much recent research interest in the existence of a major axis of life‐history variation along a fast–slow continuum within almost all major taxonomic groups. Eco‐evolutionary models of density‐dependent selection provide a general explanation for such observations of interspecific variation in the "pace of life." One issue, however, is that some large‐bodied long‐lived “slow” species (e.g., trees and large fish) often show an explosive “fast” type of reproduction with many small offspring, and species with “fast” adult life stages can have comparatively “slow” offspring life stages (e.g., mayflies). We attempt to explain such life‐history evolution using the same eco‐evolutionary modeling approach but with two life stages, separating adult reproductive strategies from offspring survival strategies. When the population dynamics in the two life stages are closely linked and affect each other, density‐dependent selection occurs in parallel on both reproduction and survival, producing the usual one‐dimensional fast–slow continuum (e.g., houseflies to blue whales). However, strong density dependence at either the adult reproduction or offspring survival life stage creates quasi‐independent population dynamics, allowing fast‐type reproduction alongside slow‐type survival (e.g., trees and large fish), or the perhaps rarer slow‐type reproduction alongside fast‐type survival (e.g., mayflies—short‐lived adults producing few long‐lived offspring). Therefore, most types of species life histories in nature can potentially be explained via the eco‐evolutionary consequences of density‐dependent selection given the possible separation of demographic effects at different life stages.  相似文献   
16.
Frankia is the diverse bacterial genus that fixes nitrogen within root nodules of actinorhizal trees and shrubs. Systematic and ecological studies of Frankia have been hindered by the lack of morphological, biochemical, or other markers to readily distinguish strains. Recently, nucleotide sequence of 16 S RNA from the small ribosomal subunit has been used to classify and identify a variety of microorganisms. We report nucleotide sequences from portions of the 16 S ribosomal RNA from Frankia strains AcnI1 isolated from Alnus viridis ssp. crispa (Ait.) Turrill and PtI1 isolated from Purshia tridentata (Pursh) DC. The number of nucleotide base substitutions and gaps we find more than doubles the previously reported sequence diversity for the same variable regions within other strains of Frankia.  相似文献   
17.
Utilizing horseradish peroxidase as a tracer protein, it is shown that trichogen and tormogen cells have a secretory function. Protein tracer from the haemolymph enters these cells by endocytosis and is transported to the sensillum liquor cavity by transport vacuoles and multivesicular bodies. It is also suggested that closely associated pigment cells may be involved in macromolecular transport.  相似文献   
18.
19.
In this paper a modular model of the GnRH neuron is presented. For the aim of simplicity, the currents corresponding to fast time scales and action potential generation are described by an impulsive system, while the slower currents and calcium dynamics are described by usual ordinary differential equations (ODEs). The model is able to reproduce the depolarizing afterpotentials, afterhyperpolarization, periodic bursting behavior and the corresponding calcium transients observed in the case of GnRH neurons.  相似文献   
20.
Parasitic nematodes cause a massive worldwide burden on human health along with a loss of livestock and agriculture productivity. Anthelmintics have been widely successful in treating parasitic nematodes. However, resistance is increasing, and little is known about the molecular and genetic causes of resistance for most of these drugs. The free-living roundworm Caenorhabditis elegans provides a tractable model to identify genes that underlie resistance. Unlike parasitic nematodes, C. elegans is easy to maintain in the laboratory, has a complete and well annotated genome, and has many genetic tools. Using a combination of wild isolates and a panel of recombinant inbred lines constructed from crosses of two genetically and phenotypically divergent strains, we identified three genomic regions on chromosome V that underlie natural differences in response to the macrocyclic lactone (ML) abamectin. One locus was identified previously and encodes an alpha subunit of a glutamate-gated chloride channel (glc-1). Here, we validate and narrow two novel loci using near-isogenic lines. Additionally, we generate a list of prioritized candidate genes identified in C. elegans and in the parasite Haemonchus contortus by comparison of ML resistance loci. These genes could represent previously unidentified resistance genes shared across nematode species and should be evaluated in the future. Our work highlights the advantages of using C. elegans as a model to better understand ML resistance in parasitic nematodes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号