首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8765篇
  免费   763篇
  国内免费   4篇
  9532篇
  2023年   78篇
  2022年   99篇
  2021年   181篇
  2020年   123篇
  2019年   154篇
  2018年   201篇
  2017年   206篇
  2016年   337篇
  2015年   445篇
  2014年   514篇
  2013年   759篇
  2012年   634篇
  2011年   657篇
  2010年   477篇
  2009年   378篇
  2008年   487篇
  2007年   452篇
  2006年   422篇
  2005年   367篇
  2004年   395篇
  2003年   345篇
  2002年   332篇
  2001年   85篇
  2000年   63篇
  1999年   83篇
  1998年   93篇
  1997年   68篇
  1996年   84篇
  1995年   66篇
  1994年   49篇
  1993年   71篇
  1992年   64篇
  1991年   45篇
  1990年   39篇
  1989年   36篇
  1988年   38篇
  1987年   27篇
  1986年   24篇
  1985年   42篇
  1984年   43篇
  1983年   41篇
  1982年   41篇
  1981年   34篇
  1980年   21篇
  1978年   36篇
  1977年   27篇
  1976年   22篇
  1974年   21篇
  1972年   22篇
  1971年   16篇
排序方式: 共有9532条查询结果,搜索用时 31 毫秒
941.

Background

AMPK is a promising pharmacological target in relation to metabolic disorders partly due to its non-insulin dependent glucose uptake promoting role in skeletal muscle. Of the 2 catalytic α-AMPK isoforms, α2 AMPK is clearly required for stimulation of glucose transport into muscle by certain stimuli. In contrast, no clear function has yet been determined for α1 AMPK in skeletal muscle, possibly due to α-AMPK isoform signaling redundancy. By applying low-intensity twitch-contraction and H2O2 stimulation to activate α1 AMPK, but not α2 AMPK, in wildtype and α-AMPK transgenic mouse muscles, this study aimed to define conditions where α1 AMPK is required to increase muscle glucose uptake.

Methodology/Principal Findings

Following stimulation with H2O2 (3 mM, 20 min) or twitch-contraction (0.1 ms pulse, 2 Hz, 2 min), signaling and 2-deoxyglucose uptake were measured in incubated soleus muscles from wildtype and muscle-specific kinase-dead AMPK (KD), α1 AMPK knockout or α2 AMPK knockout mice. H2O2 increased the activity of both α1 and α2 AMPK in addition to Akt phosphorylation, and H2O2-stimulated glucose uptake was not reduced in any of the AMPK transgenic mouse models compared with wild type. In contrast, twitch-contraction increased the activity of α1 AMPK, but not α2 AMPK activity nor Akt or AS160 phosphorylation. Glucose uptake was markedly lower in α1 AMPK knockout and KD AMPK muscles, but not in α2 AMPK knockout muscles, following twitch stimulation.

Conclusions/Significance

These results provide strong genetic evidence that α1 AMPK, but not α2 AMPK, Akt or AS160, is necessary for regulation of twitch-contraction stimulated glucose uptake. To our knowledge, this is the first report to show a major and essential role of α1 AMPK in regulating a physiological endpoint in skeletal muscle. In contrast, AMPK is not essential for H2O2-stimulated muscle glucose uptake, as proposed by recent studies.  相似文献   
942.
Mammalian alpha-defensins, expressed primarily in leukocytes and epithelia, play important roles in innate and adaptive immune responses to microbial infection. Six invariant cysteine residues forming three indispensable disulfide bonds and one Gly residue required structurally for an atypical beta-bulge are totally conserved in the otherwise diverse sequences of all known mammalian alpha-defensins. In addition, a pair of oppositely charged residues (Arg/Glu), forming a salt bridge across a protruding loop in the molecule, is highly conserved. To investigate the structural and functional roles of the conserved Arg(6)-Glu(14) salt bridge in human alpha-defensin 5 (HD5), we chemically prepared HD5 and its precursor proHD5 as well as their corresponding salt bridge-destabilizing analogs E14Q-HD5 and E57Q-proHD5. The Glu-to-Gln mutation, whereas significantly reducing the oxidative folding efficiency of HD5, had no effect on the folding of proHD5. Bovine trypsin productively and correctly processed proHD5 in vitro but spontaneously degraded E57Q-proHD5. Significantly, HD5 was resistant to trypsin treatment, whereas E14Q-HD5 was highly susceptible. Further, degradation of E14Q-HD5 by trypsin was initiated by the cleavage of the Arg(13)-Gln(14) peptide bond in the loop region, a catastrophic proteolytic event resulting directly in quick digestion of the whole defensin molecule. The E14Q mutation did not alter the bactericidal activity of HD5 against Staphylococcus aureus but substantially enhanced the killing of Escherichia coli. By contrast, proHD5 and E57Q-proHD5 were largely inactive against both strains at the concentrations tested. Our results confirm that the primary function of the conserved salt bridge in HD5 is to ensure correct processing of proHD5 and subsequent stabilization of mature alpha-defensin in vivo.  相似文献   
943.
944.
The fraction of biologically active methyl tert-butyl ether degraders in reactors is just as important for prediction of removal rates as knowledge of the kinetic parameters. The fraction of biologically active methyl tert-butyl ether degraders in a heterogeneous biomass sample, taken from a packed bed reactor, was determined using a batch kinetic based approach. The procedure involved modeling of methyl tert-butyl ether removal rates from batch experiments followed by parameter estimations. It was estimated to be 5–14% (w/w) of the measured volatile suspended solids concentration in the reactor.  相似文献   
945.
Dissipation of excess absorbed light energy in eukaryotic photoautotrophs through zeaxanthin- and DeltapH-dependent photosystem II antenna quenching is considered the major mechanism for non-photochemical quenching and photoprotection. However, there is mounting evidence of a zeaxanthin-independent pathway for dissipation of excess light energy based within the PSII reaction centre that may also play a significant role in photoprotection. We summarize recent reports which indicate that this enigma can be explained, in part, by the fact that PSII reaction centres can be reversibly interconverted from photochemical energy transducers that convert light into ATP and NADPH to efficient, non-photochemical energy quenchers that protect the photosynthetic apparatus from photodamage. In our opinion, reaction centre quenching complements photoprotection through antenna quenching, and dynamic regulation of photosystem II reaction centre represents a general response to any environmental condition that predisposes the accumulation of reduced Q(A) in the photosystem II reaction centres of prokaryotic and eukaryotic photoautotrophs. Since the evolution of reaction centres preceded the evolution of light harvesting systems, reaction centre quenching may represent the oldest photoprotective mechanism.  相似文献   
946.
947.
Antifreeze proteins are a structurally diverse group of proteins characterized by their unique ability to cause a separation of the melting- and growth-temperatures of ice. These proteins have evolved independently in different kinds of cold-adapted ectothermic animals, including insects and fish, where they protect against lethal freezing of the body fluids. There is a great variability in the capacity of different kinds of antifreeze proteins to evoke the antifreeze effect, but the basis of these differences is not well understood. This study reports on salt-induced enhancement of the antifreeze activity of an antifreeze protein from the longhorn beetle Rhagium inquisitor (L.). The results imply that antifreeze activity is predetermined by a steady-state distribution of the antifreeze protein between the solution and the ice surface region. The observed salt-induced enhancement of the antifreeze activity compares qualitatively and quantitatively with salt-induced lowering of protein solubility. Thus, salts apparently enhance antifreeze activity by evoking a solubility-induced shift in the distribution pattern of the antifreeze proteins in favour of the ice. These results indicate that the solubility of antifreeze proteins in the solution surrounding the ice crystal is a fundamental physiochemical property in relation to their antifreeze potency.  相似文献   
948.
Cell migration is a fundamental process in animal development, including development of the nervous system. In C. elegans, the bilateral QR and QL neuroblasts undergo initial anterior and posterior polarizations and migrations before they divide to produce neurons. A subsequent Wnt signal from the posterior instructs QL descendants to continue their posterior migration. Nck-interacting kinases (NIK kinases) have been implicated in cell and nuclear migration as well as lamellipodia formation. Studies here show that the C. elegans MIG-15 NIK kinase controls multiple aspects of initial Q cell polarization, including the ability of the cells to polarize, to maintain polarity, and to migrate. These data suggest that MIG-15 acts independently of the Wnt signal that controls QL descendant posterior migration. Furthermore, MIG-15 affects the later migrations of neurons generated from Q cell division. Finally, a mosaic analysis indicates that MIG-15 acts cell-autonomously in Q descendant migration.  相似文献   
949.
Using a quartz crystal microbalance with dissipative monitoring (QCM-D) we have determined the adsorption reversibility and viscoelastic properties of ribonuclease A adsorbed to hydrophobic self-assembled monolayers. Consistent with previous work with proteins unfolding on hydrophobic surfaces, high protein solution concentrations, reduced adsorption times, and low ammonium sulfate concentrations lead to increased adsorption reversibility. Measured rigidity of the protein layers normalized for adsorbed protein amounts, a quantity we term specific dissipation, correlated with adsorption reversibility of ribonuclease A. These results suggest that specific dissipation may be correlated with changes in structure of adsorbed proteins.  相似文献   
950.
The interactions between a drug and lipids may be critical for the pharmacological activity. We previously showed that the ability of a fluoroquinolone antibiotic, ciprofloxacin, to induce disorder and modify the orientation of the acyl chains is related to its propensity to be expelled from a monolayer upon compression [1]. Here, we compared the binding of ciprofloxacin on DPPC and DPPG liposomes (or mixtures of phospholipids [DOPC:DPPC], and [DOPC:DPPG]) using quasi-elastic light scattering and steady-state fluorescence anisotropy. We also investigated ciprofloxacin effects on the transition temperature (T(m)) of lipids and on the mobility of phosphate head groups using Attenuated Total Reflection Fourier Transform Infrared-Red Spectroscopy (ATR-FTIR) and (31)P Nuclear Magnetic Resonance (NMR) respectively. In the presence of ciprofloxacin we observed a dose-dependent increase of the size of the DPPG liposomes whereas no effect was evidenced for DPPC liposomes. The binding constants K(app) were in the order of 10(5) M(-1) and the affinity appeared dependent on the negative charge of liposomes: DPPG>DOPC:DPPG (1:1; M:M)>DPPC>DOPC:DPPC (1:1; M:M). As compared to the control samples, the chemical shift anisotropy (Deltasigma) values determined by (31)P NMR showed an increase of 5 and 9 ppm for DPPC:CIP (1:1; M:M) and DPPG:CIP (1:1; M:M) respectively. ATR-FTIR experiments showed that ciprofloxacin had no effect on the T(m) of DPPC but increased the order of the acyl chains both below and above this temperature. In contrast, with DPPG, ciprofloxacin induced a marked broadening effect on the transition with a decrease of the acyl chain order below its T(m) and an increase above this temperature. Altogether with the results from the conformational analysis, these data demonstrated that the interactions of ciprofloxacin with lipids depend markedly on the nature of their phosphate head groups and that ciprofloxacin interacts preferentially with anionic lipid compounds, like phosphatidylglycerol, present at a high content in these membranes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号