收费全文 | 7648篇 |
免费 | 452篇 |
8100篇 |
2024年 | 11篇 |
2023年 | 76篇 |
2022年 | 150篇 |
2021年 | 277篇 |
2020年 | 200篇 |
2019年 | 242篇 |
2018年 | 291篇 |
2017年 | 304篇 |
2016年 | 380篇 |
2015年 | 532篇 |
2014年 | 503篇 |
2013年 | 557篇 |
2012年 | 612篇 |
2011年 | 582篇 |
2010年 | 356篇 |
2009年 | 318篇 |
2008年 | 394篇 |
2007年 | 356篇 |
2006年 | 328篇 |
2005年 | 249篇 |
2004年 | 215篇 |
2003年 | 210篇 |
2002年 | 170篇 |
2001年 | 151篇 |
2000年 | 112篇 |
1999年 | 91篇 |
1998年 | 39篇 |
1997年 | 26篇 |
1996年 | 23篇 |
1995年 | 16篇 |
1994年 | 18篇 |
1993年 | 20篇 |
1992年 | 34篇 |
1991年 | 19篇 |
1990年 | 22篇 |
1989年 | 13篇 |
1988年 | 24篇 |
1987年 | 19篇 |
1986年 | 14篇 |
1985年 | 14篇 |
1984年 | 9篇 |
1983年 | 8篇 |
1982年 | 7篇 |
1981年 | 7篇 |
1979年 | 15篇 |
1978年 | 9篇 |
1977年 | 9篇 |
1975年 | 8篇 |
1974年 | 11篇 |
1970年 | 6篇 |
Methods and Results: Cell adhesion and phage infection studies were carried out in a parallel plate flow chamber under laminar conditions. Cells were allowed to adhere until reaching 1·7–1·8 × 10
Conclusions: Phages are efficient in the eradication of bacterial cells at the early stage of biofilm formation and their presence at the surface did not allow bacterial recolonization of the surface.
Significance and Impact of the Study: To date, no published studies have been made concerning in situ and real time quantification of cell removal from surfaces due to phage action. 相似文献
Immobilization of cellulases on magnetic nanoparticles, especially magnetite nanoparticles, has been the main approach studied to make this enzyme, economically and industrially, more attractive. However, magnetite nanoparticles tend to agglomerate, are very reactive and easily oxidized in air, which has strong impact on their useful life. Thus, it is very important to provide proper surface coating to avoid the mentioned problems. This study aimed to investigate the immobilization of cellulase on magnetic nanoparticles encapsulated in polymeric nanospheres. The support was characterized in terms of morphology, average diameter, magnetic behavior and thermal decomposition analyses. The polymer nanospheres containing encapsulated magnetic nanoparticles showed superparamagnetic behavior and intensity average diameter about 150 nm. Immobilized cellulase exhibited broader temperature stability than in the free form and great reusability capacity, 69% of the initial enzyme activity was maintained after eight cycles of use. The magnetic support showed potential for cellulase immobilization and allowed fast and easy biocatalyst recovery through a single magnet.
相似文献