首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1533篇
  免费   103篇
  2022年   11篇
  2021年   14篇
  2020年   9篇
  2018年   17篇
  2017年   17篇
  2016年   21篇
  2015年   53篇
  2014年   61篇
  2013年   64篇
  2012年   88篇
  2011年   85篇
  2010年   69篇
  2009年   46篇
  2008年   57篇
  2007年   82篇
  2006年   62篇
  2005年   67篇
  2004年   49篇
  2003年   72篇
  2002年   72篇
  2001年   11篇
  1999年   12篇
  1998年   19篇
  1997年   13篇
  1996年   10篇
  1995年   9篇
  1988年   9篇
  1986年   13篇
  1985年   9篇
  1984年   19篇
  1983年   18篇
  1982年   19篇
  1980年   15篇
  1979年   12篇
  1978年   14篇
  1977年   10篇
  1976年   11篇
  1974年   11篇
  1973年   10篇
  1972年   10篇
  1971年   10篇
  1970年   18篇
  1968年   17篇
  1967年   10篇
  1957年   8篇
  1954年   8篇
  1941年   8篇
  1937年   13篇
  1934年   9篇
  1930年   9篇
排序方式: 共有1636条查询结果,搜索用时 15 毫秒
991.
Dihydroxyacetone (Dha) kinases are a family of sequence-related enzymes that utilize either ATP or phosphoenolpyruvate (PEP) as source of high energy phosphate. The PEP-dependent Dha kinase of Escherichia coli consists of three subunits. DhaK and DhaL are homologous to the Dha and nucleotide-binding domains of the ATP-dependent kinase of Citrobacter freundii. The DhaM subunit is a multiphosphorylprotein of the PEP:sugar phosphotransferase system (PTS). DhaL contains a tightly bound ADP as coenzyme that gets transiently phosphorylated in the double displacement of phosphate between DhaM and Dha. Here we report the 2.6A crystal structure of the E.coli DhaL subunit. DhaL folds into an eight-helix barrel of regular up-down topology with a hydrophobic core made up of eight interlocked aromatic residues and a molecule of ADP bound at the narrower end of the barrel. The alpha and beta phosphates of ADP are complexed by two Mg2+ and by a hydrogen bond to the imidazole ring of an invariant histidine. The Mg ions in turn are coordinated by three gamma-carboxyl groups of invariant aspartate residues. Water molecules complete the octahedral coordination sphere. The nucleotide is capped by an alpha-helical segment connecting helices 7 and 8 of the barrel. DhaL and the nucleotide-binding domain of the C.freundii kinase assume the same fold but display strongly different surface potentials. The latter observation and biochemical data indicate that the domains of the C.freundii Dha kinase constitute one cooperative unit and are not randomly interacting and independent like the subunits of the E.coli enzyme.  相似文献   
992.
Abstract Huntingtin is a large, multi-domain protein of unknown function in the brain. An abnormally elongated polyglutamine stretch in its N-terminus causes Huntington's disease (HD), a progressive neurodegenerative disorder. Huntingtin has been proposed to play a functional role in membrane trafficking via proteins involved in endo- and exocytosis. Here, we supply evidence for a direct association between huntingtin and membranes. In the brains of R6/2 mice with HD pathology, a 64 kDa N-terminal huntingtin fragment accumulated in postsynaptic membranes during the pre-symptomatic period of 4-8 weeks of age. In addition, an oligomeric fragment of approximately 200 kDa was detected at 8 weeks of age. Simultaneous progressive changes in distribution of amphiphysin, synaptojanin, and subunits of NMDA- and AMPA-receptors provide a strong indication of dysfunctional synaptic trafficking. Composition of the major phospholipids in the synaptic membranes was unaffected. In vitro, large unilamellar vesicles of brain lipids readily associated with soluble N-terminal huntingtin exon 1 fragments and stimulated fibrillogenesis of mutant huntingtin aggregates. Moreover, interaction of both mutant and wild-type huntingtin exon 1 fragments with brain lipids caused bilayer perturbation, mediated through a proline-rich region adjacent to the polyglutamines. This suggests that lipid interactions in vivo could influence misfolding of huntingtin and may play an early role in HD pathogenesis.  相似文献   
993.
994.
Neuraminidase inhibitors (NAIs) are antivirals designed to target conserved residues at the neuraminidase (NA) enzyme active site in influenza A and B viruses. The conserved residues that interact with NAIs are under selective pressure, but only a few have been linked to resistance. In the A/Wuhan/359/95 (H3N2) recombinant virus background, we characterized seven charged, conserved NA residues (R118, R371, E227, R152, R224, E276, and D151) that directly interact with the NAIs but have not been reported to confer resistance to NAIs. These NA residues were replaced with amino acids that possess side chains having similar properties to maintain their original charge. The NA mutations we introduced significantly decreased NA activity compared to that of the A/Wuhan/359/95 recombinant wild-type and R292K (an NA mutation frequently reported to confer resistance) viruses, which were analyzed for comparison. However, the recombinant viruses differed in replication efficiency when we serially passaged them in vitro; the growth of the R118K and E227D viruses was most impaired. The R224K, E276D, and R371K mutations conferred resistance to both zanamivir and oseltamivir, while the D151E mutation reduced susceptibility to oseltamivir only (approximately 10-fold) and the R152K mutation did not alter susceptibility to either drug. Because the R224K mutation was genetically unstable and the emergence of the R371K mutation in the N2 subtype is statistically unlikely, our results suggest that only the E276D mutation is likely to emerge under selective pressure. The results of our study may help to optimize the design of NAIs.  相似文献   
995.
The community working on model organisms is growing steadily and the number of model organisms for which proteome data are being generated is continuously increasing. To standardize efforts and to make optimal use of proteomics data acquired from model organisms, a new Human Proteome Organisation (HUPO) initiative on model organism proteomes (iMOP) was approved at the HUPO Ninth Annual World Congress in Sydney, 2010. iMOP will seek to stimulate scientific exchange and disseminate HUPO best practices. The needs of model organism researchers for central databases will be better represented, catalyzing the integration of proteomics and organism-specific databases. Full details of iMOP activities, members, tools and resources can be found at our website http://www.imop.uzh.ch/ and new members are invited to join us.  相似文献   
996.
Experimental studies have shown that some proteins exist in two alternative native-state conformations. It has been proposed that such bi-stable proteins can potentially function as evolutionary bridges at the interface between two neutral networks of protein sequences that fold uniquely into the two different native conformations. Under adaptive conflict scenarios, bi-stable proteins may be of particular advantage if they simultaneously provide two beneficial biological functions. However, computational models that simulate protein structure evolution do not yet recognize the importance of bi-stability. Here we use a biophysical model to analyze sequence space to identify bi-stable or multi-stable proteins with two or more equally stable native-state structures. The inclusion of such proteins enhances phenotype connectivity between neutral networks in sequence space. Consideration of the sequence space neighborhood of bridge proteins revealed that bi-stability decreases gradually with each mutation that takes the sequence further away from an exactly bi-stable protein. With relaxed selection pressures, we found that bi-stable proteins in our model are highly successful under simulated adaptive conflict. Inspired by these model predictions, we developed a method to identify real proteins in the PDB with bridge-like properties, and have verified a clear bi-stability gradient for a series of mutants studied by Alexander et al. (Proc Nat Acad Sci USA 2009, 106:21149–21154) that connect two sequences that fold uniquely into two different native structures via a bridge-like intermediate mutant sequence. Based on these findings, new testable predictions for future studies on protein bi-stability and evolution are discussed.  相似文献   
997.
Changes in species composition during succession are driven by biotic and abiotic factors leading to a multitude of niches occupied by distinct species. Gradient analyses of plant communities provide opportunities to approximate the niche position of species along a successional gradient. Several plant traits have been used to explain mechanisms governing successional sequences, but generalising changes in species traits during primary succession is still controversial. This study examined whether the seed mass and the optimum temperature for germination could explain the niche position of several glacier foreland species along a primary successional gradient in the Austrian Central Alps. We hypothesised that pioneer species should possess lighter seeds and a lower optimum temperature for germination than late successional species. We found significant differences in the seed mass between species, but the seed mass did not correspond with the assigned niche position on the successional gradient. Germination responses to temperature also differed significantly between species. Pioneer species performed better at lower temperatures than late successional species, suggesting that the optimum temperature for germination is a driver of niche separation. We discuss the interactions between seed traits and environmental conditions along the primary successional gradient emphasising the importance of temperature requirements for the germination. Differences in the regeneration characteristics are a major cue governing species turnover in glacier foreland succession.  相似文献   
998.
Monoamine oxidase-B (Mao-B) catalysing the breakdown of the neurotransmitter dopamine, is known to be involved in the pathophysiology of Parkinson's (PD) and Alzheimer's disease (AD). Increased brain Mao-B activity is associated with AD. This alteration can also be seen in platelets, albeit the cause has hitherto remained elusive. To gain a deeper understanding of the etiology of AD, the platelet proteome was characterised, (2D DIGE pH6-9, including Mao-B) from 150 individuals: 34 AD, 13 vascular dementia, 15 non-demented PD patients, 49 matched controls, 18 oldest old and 21 young individuals. One significant change was noted after applying false discovery rate with the upregulation of the Mao-B expression (30% adjusted P value<0.001; effect size 1.31) in AD compared to age- and sex-matched controls. In contrast, Mao-B levels were unchanged in PD to matched controls. Western blot and mRNA analyses verified these findings. Moreover, Mao-B concentration correlated with age in the cognitive healthy individuals (r=0.53; P<0.001) and PD patients but not in those suffering from AD (r=-0.03; P=0.874). Mao-B activity correlated with the increased Mao-B protein expression in AD (r=0.81; P=0.016). We suggest that Mao-B platelet protein level may serve as a biomarker for age-related dementia, especially AD.  相似文献   
999.
1000.
Kaulich M  Cubizolles F  Nigg EA 《Chromosoma》2012,121(4):395-408
The putative chromatin remodeling enzyme Plk1-interacting checkpoint helicase (PICH) was discovered as an interaction partner and substrate of the mitotic kinase Plk1. During mitosis PICH associates with centromeres and kinetochores and, most interestingly, constitutes a robust marker for ultrafine DNA bridges (UFBs) that connect separating chromatids in anaphase cells. The precise roles of PICH remain to be clarified. Here, we have used antibody microinjection and siRNA-rescue experiments to study PICH function and localization during M phase progression, with particular emphasis on the role of the predicted ATPase domain and the regulation of PICH localization by Plk1. We show that interference with PICH function results in chromatin bridge formation and micronucleation and that ATPase activity is critical for PICH function. Interestingly, an intact ATPase domain of PICH is required for prevention of chromatin bridge formation but not for UFB resolution, and quantitative analyses of UFB and chromatin bridge frequencies suggest that these structures are of different etiologies. We also show that the ATPase activity of PICH is required for temporal and spatial control of PICH localization to chromatin and that Plk1 likely controls PICH localization through phosphorylation of proteins distinct from PICH itself. This work strengthens the view that PICH is an important, Plk1-regulated enzyme, whose ATPase activity is essential for maintenance of genome integrity. Although not required for the spindle assembly checkpoint, PICH is clearly important for faithful chromosome segregation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号