首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1607篇
  免费   105篇
  1712篇
  2022年   11篇
  2021年   14篇
  2018年   17篇
  2017年   17篇
  2016年   20篇
  2015年   53篇
  2014年   63篇
  2013年   67篇
  2012年   96篇
  2011年   85篇
  2010年   73篇
  2009年   47篇
  2008年   62篇
  2007年   86篇
  2006年   65篇
  2005年   70篇
  2004年   51篇
  2003年   76篇
  2002年   74篇
  2001年   14篇
  1999年   16篇
  1998年   20篇
  1997年   13篇
  1996年   11篇
  1995年   10篇
  1989年   11篇
  1988年   10篇
  1987年   9篇
  1986年   15篇
  1985年   10篇
  1984年   19篇
  1983年   19篇
  1982年   22篇
  1981年   11篇
  1980年   15篇
  1979年   12篇
  1978年   14篇
  1977年   10篇
  1976年   11篇
  1974年   11篇
  1973年   10篇
  1972年   10篇
  1971年   10篇
  1970年   18篇
  1968年   17篇
  1967年   10篇
  1941年   8篇
  1937年   13篇
  1934年   9篇
  1930年   9篇
排序方式: 共有1712条查询结果,搜索用时 15 毫秒
81.
1.
1. The net uptake of α-aminoisobutyric acid (AIB) in Ehrlich ascites tumor cells has been studied under a variety of transmembrane concentration gradients of Na+, K+ and AIB itself.  相似文献   
82.
Heavy metal environmental contaminants cannot be destroyed but require containment, preferably in concentrated form, in a solid or immobile form for recycling or final disposal. Microorganisms are able to take up and deposit high levels of contaminant metals, including radioactive metals such as uranium and plutonium, into their cell wall. Consequently, these microbial systems are of great interest as the basis for potential environmental bioremediation technologies. The outer membranes of Gram-negative microbes are highly nonsymmetric and exhibit a significant electrostatic potential gradient across the membrane. This gradient has a significant effect on the uptake and transport of charged and dipolar compounds. However, the effectiveness of microbial systems for environmental remediation will depend strongly on specific properties that determine the uptake of targeted contaminants by a particular cell wall. To aid in the design of microbial remediation technologies, knowledge of the factors that determine the affinity of a particular bacterial outer membrane for the most common ionic species found in contaminated soils and groundwater is of great importance. Using our previously developed model for the lipopolysaccharide (LPS) membrane of Pseudomonas aeruginosa, this work presents the potentials of mean force as the estimate of the free energy profile for uptake of sodium, calcium, chloride, uranyl ions, and a water molecule by the bacterial LPS membrane. A compatible classical parameter set for uranyl has been developed and validated. Results show that the uptake of uranyl is energetically a favorable process relative to the other ions studied. At neutral pH, this nuclide is shown to be retained on the surface of the LPS membrane through chelation with the carboxyl and hydroxyl groups located in the outer core.  相似文献   
83.
84.
Lipid droplets (LD) are the main depot of non-polar lipids in all eukaryotic cells. In the present study we describe isolation and characterization of LD from the industrial yeast Pichia pastoris. We designed and adapted an isolation procedure which allowed us to obtain this subcellular fraction at high purity as judged by quality control using appropriate marker proteins. Components of P. pastoris LD were characterized by conventional biochemical methods of lipid and protein analysis, but also by a lipidome and proteome approach. Our results show several distinct features of LD from P. pastoris especially in comparison to Saccharomyces cerevisiae. P. pastoris LD are characterized by their high preponderance of triacylglycerols over steryl esters in the core of the organelle, the high degree of fatty acid (poly)unsaturation and the high amount of ergosterol precursors. The high phosphatidylinositol to phosphatidylserine of ~ 7.5 ratio on the surface membrane of LD is noteworthy. Proteome analysis revealed equipment of the organelle with a small but typical set of proteins which includes enzymes of sterol biosynthesis, fatty acid activation, phosphatidic acid synthesis and non-polar lipid hydrolysis. These results are the basis for a better understanding of P. pastoris lipid metabolism and lipid storage and may be helpful for manipulating cell biological and/or biotechnological processes in this yeast.  相似文献   
85.
Recently, several studies have investigated the association between a newly reported rare functional single nucleotide polymorphism (SNP) in TP53 (rs78378222) and cancer risk, but generated inconsistent findings. The present study further investigated this association with risk of melanoma, squamous cell carcinoma of head and neck (SCCHN) and lung cancer. Using volunteers of non‐Hispanic Whites recruited for three large case–control studies, we genotyped the TP53 rs78378222 SNP in 1329 patients with melanoma, 1096 with SCCHN, 1013 with lung cancer and 3000 cancer‐free controls. Overall, we did not observe any variant homozygotes in this study population, nor significant associations between the TP53 rs78378222AC genotype or C allele and risk for melanoma (P = 0.680 and 0.682 respectively) and lung cancer (P = 0.379 and 0.382 respectively), but a protection against SCCHN (P = 0.008 and 0.008 respectively), compared with the AA genotype or A allele. An additional meta‐analysis including 19,423 cancer patients and 54,050 controls did not support such a risk association either. Our studies did not provide statistical evidence of an association between this rare TP53 variant and increased risk of melanoma, nor of lung cancer, but a possible protection against SCCHN.  相似文献   
86.
In a previous study (Spanova et al., 2010, J. Biol. Chem., 285, 6127-6133) we demonstrated that squalene, an intermediate of sterol biosynthesis, accumulates in yeast strains bearing a deletion of the HEM1 gene. In such strains, the vast majority of squalene is stored in lipid particles/droplets together with triacylglycerols and steryl esters. In mutants lacking the ability to form lipid particles, however, substantial amounts of squalene accumulate in organelle membranes. In the present study, we investigated the effect of squalene on biophysical properties of lipid particles and biological membranes and compared these results to artificial membranes. Our experiments showed that squalene together with triacylglycerols forms the fluid core of lipid particles surrounded by only a few steryl ester shells which transform into a fluid phase below growth temperature. In the hem1? deletion mutant a slight disordering effect on steryl esters was observed indicated by loss of the high temperature transition. Also in biological membranes from the hem1? mutant strain the effect of squalene per se is difficult to pinpoint because multiple effects such as levels of sterols and unsaturated fatty acids contribute to physical membrane properties. Fluorescence spectroscopic studies using endoplasmic reticulum, plasma membrane and artificial membranes revealed that it is not the absolute squalene level in membranes but rather the squalene to sterol ratio which mainly affects membrane fluidity/rigidity. In a fluid membrane environment squalene induces rigidity of the membrane, whereas in rigid membranes there is almost no additive effect of squalene. In summary, our results demonstrate that squalene (i) can be well accommodated in yeast lipid particles and organelle membranes without causing deleterious effects; and (ii) although not being a typical membrane lipid may be regarded as a mild modulator of biophysical membrane properties.  相似文献   
87.
Light control over enzyme function represents a novel and exciting field of biocatalysis research. Blue-light photoreceptors of the L ight, O xygen, V oltage (LOV) family have recently been investigated for their applicability as photoactive switches. We discuss here the primary photochemical events leading to light activation of LOV domains as well as the proposed signal propagation mechanism to the respective effector domain. Furthermore, we describe the construction of LOV fusions to different effector domains, namely a dihydrofolate reductase from Escherichia coli and a lipase from Bacillus subtilis. Both fusion partners retained functionality, and alteration of enzyme activity by light was also demonstrated. Hence, it appears that fusion of LOV photoreceptors to functional enzyme target sites via appropriate linker structures may represent a straightforward strategy to design light controllable biocatalysts.  相似文献   
88.
89.
The methylotrophic yeast Pichia pastoris is a popular yeast expression system for the production of heterologous proteins in biotechnology. Interestingly, cell organelles which play an important role in this process have so far been insufficiently investigated. For this reason, we started a systematic approach to isolate and characterize organelles from P. pastoris. In this study, we present a procedure to isolate microsomal membranes at high purity. These samples represent endoplasmic reticulum (ER) fractions which were subjected to molecular analysis of lipids and proteins. Organelle lipidomics included a detailed analysis of glycerophospholipids, fatty acids, sterols and sphingolipids. The microsomal proteome analyzed by mass spectrometry identified typical proteins of the ER known from other cell types, especially Saccharomyces cerevisiae, but also a number of unassigned gene products. The lipidome and proteome analysis of P. pastoris microsomes are prerequisite for a better understanding of functions of this organelle and for modifying this compartment for biotechnological applications.  相似文献   
90.
Holoprosencephaly (HPE) is a genetically heterogeneous disorder that affects the midline development of the forebrain and midface in humans. As a step toward identifying one of the HPE genes, we have set out to refine the HPE3 critical region on human chromosome 7q36 by analyzing 34 cell lines from families with cytogenetic abnormalities involving 7q, 24 of which are associated with HPE. Genomic clones surrounding the DNA marker D7S104, which has previously been shown to be in the HPE3 critical region, have been examined by fluorescent in situ hybridization and microsatellite analysis of our panel of patient cell lines. We report the analysis of a cluster of four translocation breakpoints within a 300-kb region of 7q36 that serves to define the minimal critical region for HPE3 and that has directed the search for candidate genes. The human Sonic Hedgehog (hSHH) gene maps to this region and has been shown to be HPE3 on the basis of mutations within the coding region of the gene. We present evidence that cytogenetic deletions and/or rearrangements of this region of chromosome 7q containing Sonic Hedgehog, and translocations that may suppress Sonic Hedgehog gene expression through a position effect are common mechanisms leading to HPE. Received: 23 December 1996 / Accepted: 17 March 1997  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号